124 research outputs found

    Mild orotic aciduria in UMPS heterozygotes: a metabolic finding without clinical consequences

    Get PDF
    BACKGROUND: Elevated urinary excretion of orotic acid is associated with treatable disorders of the urea cycle and pyrimidine metabolism. Establishing the correct and timely diagnosis in a patient with orotic aciduria is key to effective treatment. Uridine monophosphate synthase is involved in de novo pyrimidine synthesis. Uridine monophosphate synthase deficiency (or hereditary orotic aciduria), due to biallelic mutations in UMPS, is a rare condition presenting with megaloblastic anemia in the first months of life. If not treated with the pyrimidine precursor uridine, neutropenia, failure to thrive, growth retardation, developmental delay, and intellectual disability may ensue. METHODS AND RESULTS: We identified mild and isolated orotic aciduria in 11 unrelated individuals with diverse clinical signs and symptoms, the most common denominator being intellectual disability/developmental delay. Of note, none had blood count abnormalities, relevant hyperammonemia or altered plasma amino acid profile. All individuals were found to have heterozygous alterations in UMPS. Four of these variants were predicted to be null alleles with complete loss of function. The remaining variants were missense changes and predicted to be damaging to the normal encoded protein. Interestingly, family screening revealed heterozygous UMPS variants in combination with mild orotic aciduria in 19 clinically asymptomatic family members. CONCLUSIONS: We therefore conclude that heterozygous UMPS-mutations can lead to mild and isolated orotic aciduria without clinical consequence. Partial UMPS-deficiency should be included in the differential diagnosis of mild orotic aciduria. The discovery of heterozygotes manifesting clinical symptoms such as hypotonia and developmental delay are likely due to ascertainment bias

    Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    Get PDF
    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques

    Single-lens mass measurement in the high-magnification microlensing event Gaia 19bld located in the Galactic disc

    Get PDF
    CONTEXT: Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius θ_{E} and microlensing parallax π_{E} can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements are becoming viable, which can lead to the more routine determination of θ_{E} and, if the microlensing parallax is also measured, the mass of the lens. AIMS: We present the photometric analysis of Gaia19bld, a high-magnification (A ≈ 60) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of I = 9.05 mag at the peak, it was possible to collect a complete and unique set of multi-channel follow-up observations, which allowed us to determine all parameters vital for the characterisation of the lens and the source in the microlensing event. METHODS: Gaia19bld was discovered by the Gaia satellite and was subsequently intensively followed up with a network of ground-based observatories and the Spitzer Space Telescope. We collected multiple high-resolution spectra with Very Large Telescope (VLT)/X-shooter to characterise the source star. The event was also observed with VLT Interferometer (VLTI)/PIONIER during the peak. Here we focus on the photometric observations and model the light curve composed of data from Gaia, Spitzer, and multiple optical, ground-based observatories. We find the best-fitting solution with parallax and finite source effects. We derived the limit on the luminosity of the lens based on the blended light model and spectroscopic distance. RESULTS: We compute the mass of the lens to be 1.13 ± 0.03 M_{⊙} and derive its distance to be 5.52_{−0.64}^{+0.35} kpc. The lens is likely a main sequence star, however its true nature has yet to be verified by future high-resolution observations. Our results are consistent with interferometric measurements of the angular Einstein radius, emphasising that interferometry can be a new channel for determining the masses of objects that would otherwise remain undetectable, including stellar-mass black holes

    Single-lens mass measurement in the high-magnification microlensing event Gaia19bld located in the Galactic disc

    Get PDF
    This work was supported from the Polish NCN grants: Preludium No. 2017/25/N/ST9/01253, Harmonia No. 2018/30/M/ST9/00311, MNiSW grant DIR/WK/2018/12, Daina No. 2017/27/L/ST9/03221, and by the Research Council of Lithuania, grant No. S-LL-19-2. The OGLE project has received funding from the NCN grant MAESTRO 2014/14/A/ST9/00121 to AU. We acknowledge the European Commission’s H2020 OPTICON grant No. 730890. YT acknowledges the support of DFG priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets” (WA 1047/11-1). EB and RS gratefully acknowledge support from NASA grant 80NSSC19K0291. Work by AG was supported by JPL grant 1500811. Work by JCY was supported by JPL grant 1571564. SJF thanks Telescope Live for access to their telescope network. NN acknowledges the support of Data Science Research Center, Chiang Mai University. FOE acknowledges the support from the FONDECYT grant nr. 1201223. MK acknowledges the support from the NCN grant No. 2017/27/B/ST9/02727.Context. Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius θE and microlensing parallax πE can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements are becoming viable, which can lead to the more routine determination of θE and, if the microlensing parallax is also measured, the mass of the lens.  Aims. We present the photometric analysis of Gaia19bld, a high-magnification (A approximate to 60) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of I = 9.05 mag at the peak, it was possible to collect a complete and unique set of multi-channel follow-up observations, which allowed us to determine all parameters vital for the characterisation of the lens and the source in the microlensing event.  Methods. Gaia19bld was discovered by the Gaia satellite and was subsequently intensively followed up with a network of ground-based observatories and the Spitzer Space Telescope. We collected multiple high-resolution spectra with Very Large Telescope (VLT)/X-shooter to characterise the source star. The event was also observed with VLT Interferometer (VLTI)/PIONIER during the peak. Here we focus on the photometric observations and model the light curve composed of data from Gaia, Spitzer, and multiple optical, ground-based observatories. We find the best-fitting solution with parallax and finite source effects. We derived the limit on the luminosity of the lens based on the blended light model and spectroscopic distance.  Results. We compute the mass of the lens to be 1.13 ± 0.03 M⊙ and derive its distance to be 5.52-0.64+0.35 kpc. The lens is likely a main sequence star, however its true nature has yet to be verified by future high-resolution observations. Our results are consistent with interferometric measurements of the angular Einstein radius, emphasising that interferometry can be a new channel for determining the masses of objects that would otherwise remain undetectable, including stellar-mass black holes.Publisher PDFPeer reviewe

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome.info:eu-repo/semantics/publishedVersio

    Mechanisms in Protein O-Glycan Biosynthesis and Clinical and Molecular Aspects of Protein O-Glycan Biosynthesis Defects: A Review

    No full text
    BACKGROUND: Genetic diseases that affect the biosynthesis of protein O-glycans are a rapidly growing group of disorders. Because this group of disorders does not have a collective name, it is difficult to get an overview of O-glycosylation in relation to human health and disease. Many patients with an unsolved defect in N-glycosylation are found to have an abnormal O-glycosylation as well. It is becoming increasingly evident that the primary defect of these disorders is not necessarily localized in one of the glycan-specific transferases, but can likewise be found in the biosynthesis of nucleotide sugars, their transport to the endoplasmic reticulum (ER)/Golgi, and in Golgi trafficking. Already, disorders in O-glycan biosynthesis form a substantial group of genetic diseases. In view of the number of genes involved in O-glycosylation processes and the increasing scientific interest in congenital disorders of glycosylation, it is expected that the number of identified diseases in this group will grow rapidly over the coming years. CONTENT: We first discuss the biosynthesis of protein O-glycans from their building blocks to their secretion from the Golgi. Subsequently, we review 24 different genetic disorders in O-glycosylation and 10 different genetic disorders that affect both N- and O-glycosylation. The key clinical, metabolic, chemical, diagnostic, and genetic features are described. Additionally, we describe methods that can be used in clinical laboratory screening for protein O-glycosylation biosynthesis defects and their pitfalls. Finally, we introduce existing methods that might be useful for unraveling O-glycosylation defects in the future.status: publishe
    corecore