28 research outputs found

    The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: a test of emerging integrated approaches at Cwm Idwal, North Wales

    Get PDF
    This paper was accepted for publication in the journal Geomorphology and the definitive published version is available at http://dx.doi.org/10.1016/j.geomorph.2014.07.021Novel topographic survey methods that integrate both structure-from-motion (SfM) photogrammetry and small unmanned aircraft systems (sUAS) are a rapidly evolving investigative technique. Due to the diverse range of survey configurations available and the infancy of these new methods, further research is required. Here, the accuracy, precision and potential applications of this approach are investigated. A total of 543 images of the Cwm Idwal moraine–mound complex were captured from a light (b5 kg) semi-autonomous multi-rotor unmanned aircraft system using a consumer-grade 18 MP compact digital camera. The imageswere used to produce a DSM(digital surfacemodel) of themoraines. The DSMis in good agreement with 7761 total station survey points providing a total verticalRMSE value of 0.517mand verticalRMSE values as lowas 0.200mfor less densely vegetated areas of the DSM. High-precision topographic data can be acquired rapidly using this technique with the resulting DSMs and orthorectified aerial imagery at sub-decimetre resolutions. Positional errors on the total station dataset, vegetation and steep terrain are identified as the causes of vertical disagreement. Whilst this aerial survey approach is advocated for use in a range of geomorphological settings, care must be taken to ensure that adequate ground control is applied to give a high degree of accuracy

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Parùmetros fotossintéticos e crescimento em mudas de bertholletia excelsa e carapa guianensis em resposta a pré-aclimatação a pleno sol e estresse hídrico moderado

    Get PDF
    Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimesmoderate water stress (MWS, pre-dawn leaf water potential (ΚL) of -500 to -700 kPa) and without water stress (WWS, ΚL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.A luz e a ågua são importantes fatores que limitam o crescimento e o desenvolvimento das plantas. O objetivo deste estudo foi avaliar os paùmetros fotossintéticos e o crescimento em mudas de Bertholletia excelsa e Carapa guianensis em resposta a pré-aclimatação à luz solar plena e estresse hídrico moderado. Foram usados seis independentes tratamentos de pré-aclimatação a pleno sol (PFS), sendo estes de (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) e 720 min (06h00-18h00)) durante 30 dias seguidos por um período de exposição a pleno sol de 120 dias durante o dia todo. Antes da PFS, as plantas foram mantidas em casa de vegetação a baixos níveis de luz (0,8 mol m-2 dia-1). O PFS de 0 min correspondeu às plantas mantidas constatemente na casa de vegetação. Cada tratamento de PFS foi submetido desde o início até o final do experimento a dois regimes hídricos, denominado de estresse hídrico moderado (MWS, potencial hidrico da folha medido antes do amanhecer (ΚL) de -500 a -700 kPa) e sem estresse hídrico (WWS , ΚL de -300 kPa, solo mantido na capacidade de campo). As plantas do tratamento MWS receberam apenas uma fração do volume de ågua fornecido para aquelas do tratamento WWS. No final do período de 120 dias foi avaliada a fotossíntese saturada por luz (Amax), a condutùncia estomåtica (g s), transpiração (E) e o crescimento. Amax e g s foram maiores em todas as plantas sob o tratamento de PFS. A taxa de crescimento em diùmetro e Amax foram maiores em plantas de C. guianensis submetidas à MWS. O contrårio foi observado em B. excelsa. O crescimento das mudas foi maior nas plantas expostas à luz solar em 180 minutos em ambas as espécies. Entretanto, as plantas de B. excelsa foram mais sensíveis ao estresse hídrico moderado. C. guianensis foi à especie que teve melhor desempenho fotossintético e crescimento sob estresse hídrico moderado e luz solar plena. Portanto, essa espécie tem grande potencialidade para ser testada em programas de reflorestamento
    corecore