87 research outputs found

    A neural model of cross-modal association in insects

    Get PDF
    Abstract. We developed a computational model of learning in the Mushroom Body, a region of multimodal integration in the insect brain. Using realistic neural dynamics and a biologically-based learning rule (spike timing dependent plasticity), the model is tested as part of an insect brain inspired architecture within a closed loop behavioural task. Replicating in simulation an experiment carried out on bushcrickets, we show the system can successfully associate visual to auditory cues, so as to maintain a steady heading towards an intermittent sound source.

    Theoretical calculations that determine the stability of the knife holder milling tool on a support sliding in the process of operation

    Get PDF
    In this regard at department of woodworking machines and tools the mill which has an opportunity to change the angles of cutting and an axial corner at the same time is designed and made. It will allow to reduce power by cutting, to increase quality of the processed sur-face and to increase the period of firmness of the tool.На кафедре деревообрабатывающих станков и инструментов спроектирована и изготовлена фреза, у которой есть возможность изменять углы резания и осевой угол одновременно. Это позволит уменьшить мощность на резание, повысить качество обработанной поверхности и увеличить период стойкости инструмента

    Resonant neurons and bushcricket behaviour

    Get PDF
    The resonant properties of the intrinsic dynamics of single neurons could play a direct role in behaviour. One plausible role is in the recognition of temporal patterns, such as that seen in the auditory communication systems of Orthoptera. Recent behavioural data from bushcrickets suggests that this behaviour has interesting resonance properties, but the underlying mechanism is unknown. Here we show that a very simple and general model for neural resonance could directly account for the different behavioural responses of bushcrickets to different song patterns

    Evolving a Neural Model of Insect Path Integration

    Get PDF
    Path integration is an important navigation strategy in many animal species. We use a genetic algorithm to evolve a novel neural model of path integration, based on input from cells that encode the heading of the agent in a manner comparable to the polarization-sensitive interneurons found in insects. The home vector is encoded as a population code across a circular array of cells that integrate this input. This code can be used to control return to the home position. We demonstrate the capabilities of the network under noisy conditions in simulation and on a robot

    Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes.</p> <p>Methods</p> <p>A simple behavioural assays was developed to study visual and olfactory associative learning in <it>Anopheles gambiae</it>, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding.</p> <p>Results</p> <p>Under such experimental conditions <it>An. gambiae </it>females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success.</p> <p>Conclusions</p> <p>The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for <it>An. gambiae</it>'s host finding and blood-feeding behaviour with important potential implications for vector control.</p

    Vision for navigation: what can we learn from ants?

    Get PDF
    The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insectlevel performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware.We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours

    Dietary Salt Levels Affect Salt Preference and Learning in Larval Drosophila

    Get PDF
    Drosophila larvae change from exhibiting attraction to aversion as the concentration of salt in a substrate is increased. However, some aversive concentrations appear to act as positive reinforcers, increasing attraction to an odour with which they have been paired. We test whether this surprising dissociation between the unconditioned and conditioned response depends on the larvae's experience of salt concentration in their food. We find that although the point at which a NaCl concentration becomes aversive shifts with different rearing experience, the dissociation remains evident. Testing larvae using a substrate 0.025M above the NaCl concentration on which the larvae were reared consistently results in aversive choice behaviour but appetitive reinforcement effects

    Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex

    Get PDF
    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers

    A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    Get PDF
    BACKGROUND: The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS: We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE: We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors
    corecore