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A neural model of cross-modal association
in insects

Jan Wessnitzer and Barbara Webb ∗

Institute of Perception, Action and Behaviour - School of Informatics
University of Edinburgh - United Kingdom

Abstract. We developed a computational model of learning in the Mush-
room Body, a region of multimodal integration in the insect brain. Using
realistic neural dynamics and a biologically-based learning rule (spike tim-
ing dependent plasticity), the model is tested as part of an insect brain
inspired architecture within a closed loop behavioural task. Replicating
in simulation an experiment carried out on bushcrickets, we show the sys-
tem can successfully associate visual to auditory cues, so as to maintain a
steady heading towards an intermittent sound source.

1 Introduction

A large body of evidence suggests that the Mushroom Body (MB), a distinct
region in the insect brain, plays a cardinal role in adaptive behaviour (see [1] for a
review). We propose a minimalist architecture, based on this neural circuit, able
to modulate reflex behaviours in closed-loop conditions i.e. where the system’s
output influences the system’s inputs. We test it for the simulated task of using
visual cues for maintaining a course towards a sound source, as observed in the
bushcricket Poecilimon affinis [2].

Male bushcrickets are able to maintain a straight course to a female, by
coupling visual cues to an acoustically detected direction [2]. Stabilising effects
of visual information on course maintenance are found in other insects (c.f., [3]),
but in this case it was also shown that optical cues could stand in for (temporarily
absent) auditory signals. In particular, the animal could quickly learn to walk at
an arbitrary angle to a visual landmark, corresponding to the sound direction.
In the absence of sound it would follow the displacement of the landmark with
an appropriate change in walking direction. In a comparable task, the MB of
the cockroach have been shown to play a role in place memory relating distant
visual cues to an invisible target [4]. Here we show how the neural architecture
of the MB can account for such capabilities, using a biologically plausible neural
representation and learning rule.

2 Model description

2.1 Neuron model

We chose the neuron model proposed by Izhikevich [5] since it exhibits biologi-
cally plausible dynamics, similar to Hodgkin-Huxley-type neurons, but is com-
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putationally less expensive and thus, suitable for large-scale simulation. Change
in membrane potential v (mV) is modelled as:

C
dv

dt
= k(v − vr)(v − vt)− u + I + [ξ ∼ N(0, σ)] (1)

du

dt
= a(b(v − vr)− u), (2)

where u is the recovery current and I the synaptic input. a = 0.3, b = −0.2,
c = −65, d = 8, and k = 2 are model parameters. C = 100 (pF) is the
capacitance, vr = −60mV is the resting potential, and vt = −40mV is the
instantaneous threshold potential. ξ is a Gaussian noise term with standard
deviation σ = 1. The variables v and u are reset if membrane potential exceeds
a threshold (v ≥ +35mV): {

v ← c
u← u + d

. (3)

Synaptic inputs are modelled by:

I(t + Δt) = gS(t)(vrev − v(t)), (4)

where vrev (mV) is the reversal potential of the synapse and g (nS) is the
synaptic conductance. The reversal potential of excitatory synapses is 0mV,
whereas that of inhibitory synapses is −90mV. S(t) is the amount of neuro-
transmitter active at the synapse at time t and is updated as follows:

S(t + Δt) =

{
S(t)e

−Δt
τsyn + δ , if presynaptic spike

S(t)e
−Δt
τsyn , otherwise

, (5)

where δ = 0.5 is the amount of neurotransmitter released when a presynaptic
spike occurred, τsyn (ms) is the synaptic timescale, and the simulation timestep
Δt was set to 0.25ms.

2.2 Neural architecture

The neural architecture for the agent is based on the insect brain; in partic-
ular, on evidence that the MB is involved in modulating more basic, reflexive
behaviours [1]. Insect behaviour is often viewed as collections of parallel, highly
specialised sensorimotor loops, and such loops form the basis of our proposed
architecture (such as the phonotaxis loop in figure 1). However, collections
of reflex-loops are insufficient for explaining the behavioural complexity of in-
sects [6]. Higher brain centers, such as the MB, act to modulate the direct
sensorimotor loops in context-dependant and heterarchical manner (c.f., [6, 7]).
Indirect secondary pathways via the MB, which form a parallel route for sen-
sory inflow, are used to place information from various sensory modalities or
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other domain-specific sensorimotor loops into context, and to form associations
between different inputs.

We have used this architecture in previous modelling of non-elemental asso-
ciative learning [8]. In the current experiment, the reflex pathway represents a
response to sound (see figure 1). Each spike of the output (left or right) neu-
rons of the phonotaxis (sound localising) circuit (based on [9]) cause the agent to
turn by 1 degree in the direction of the sound source and also excite the extrinsic
neurons (EN). The visual position of the landmark is mapped onto projection
neurons (PN) that activate the Kenyon cells (KC) that form the mushroom
body. These converge on the extrinsic neurons. During conditioning, the sound
is on and the agent moves towards it. After conditioning, the agent should have
associated the required movements with a particular landmark direction, and
thus be able to control its course using only visual cues.

Phonotaxis Visual input

Excitatory

Inhibitory

EN

KC

PN

Left Right

Motor output

Fig. 1: The implemented MB network receives sensory cues from the visual field
via projection neurons (PN), which make direct excitatory connections to the
Kenyon cells (KC). The MB output converges on a small number of extrinsic
neurons (EN), which are also excited by the underlying direct reflex pathways,
and can activate these pathways. Learning occurs between the KC and EN.

PN layer. This layer consists of 72 neurons giving a visual resolution of
360
72 = 5 degrees. We assumed preprocessing of visual information and that
receptive fields are not overlapping. Each PN encodes a particular relative an-
gle towards the landmark. The neurotransmitter release (at a PN when the
landmark is in view at its particular relative angle) is calculated as follows:
S(t + Δt) = S(t) + δ.

KC layer. The KC layer consists of 72 neurons. The topographical organi-
sation of the PN layer is maintained, i.e. each KC only receives input from one
PN. The synaptic strength of PN-KC synapses (gPN,KC) were set at random in
the interval [20,30].

EN layer. The EN layer contains 2 neurons and each EN is connected to all
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KC, i.e., every KC-EN pair is connected (τKC,EN = 5ms). Learning occurs only
through modulation of the KC-EN connections. However, the synaptic conduc-
tance gKC,EN for all synapses is initialised to 0, and is subsequently modified
as described below. The EN neurons also receive excitatory input from the un-
derlying reflex pathways, thus the learning reflects the coincidence of activity in
these pathways and the activity in the KC layer.

2.3 Spike Time-Dependent Plasticity (STDP)

Synapses are modified using STDP which has been observed in biological neural
systems (e.g., [10]). In STDP, synaptic change depends on the relative timing
of pre- and post-synaptic action potentials. Synaptic conductances are adapted
by the following STDP rule:

Δg =

⎧⎨
⎩ A+e

tpre−tpost
τ+ , if tpre − tpost < 0

A−e
−(tpre−tpost)

τ− , if tpre − tpost ≥ 0
, (6)

where tpre and tpost are the spiking times of the pre- and postsynaptic neuron
respectively. A+ = 20, A− = −20, τ+ = 10ms, and τ− = 5ms are parameters.
If this modification rule of synaptic conductances g pushes the values out of
the allowed range 0 ≤ g ≤ gmax, g is set to the appropriate limiting value
(gmax = 50).

A ‘forgetting’ factor is introduced in the form of a slow decay of g. At each
timestep,

g(t + Δt) = g(t)e
Δt

τdecay , (7)

where τdecay = 105 (ms). The coupling of visual cues to auditory signals
should only be temporary (c.f., [2]).

3 Results

The model was tested in two scenarios. In one, the agent walks on a treadmill so
that it can only change its orientation - this is directly comparable to the origi-
nal behavioural experiments on the bushcricket. In the other, the agent moves
in an arena towards the sound source, which is more like the natural interac-
tion of the insect with the environmental cues. In each case the conditioning
trials (with constant sound) lasted a total of 120s, with the agent starting at
a random heading. The conditioning trials were repeated and reset as follows.
In the ‘treadmill’ scenario the heading was randomly reset every 10s, whereas
in the ‘arena’ scenario if it arrived within a small radius of the sound source it
was returned to its starting position (with a random heading) and repeated its
approach.

In the ‘arena’ scenario, coupling visual cues to phonotactic behaviour has
a stabilising effect on course maintenance. As a measure we used the Vector
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Fig. 2: Schematic drawing of neural activity. As the agent zig-zags towards the
sound source (a), turning is controlled by the output (left, right) of the phono-
taxis network (b) activating the extrinsic neurons (EN). During these move-
ments, the visual stimulus activates several different projection neurons (PN)
which activate their respective Kenyon cells (KC). The system learns to asso-
ciate KC and EN firing, so that after conditioning (c) the visual stimulus alone
is able to control turning.

Length (VL) defined as the quotient of the distance from start position to the
position of the source and the actual path length. The mean VL was 0.59
(s.d.=0.1) before conditioning and 0.818 (s.d.=0.182) after conditioning. More
importantly, the landmark could now be used to stand in for the sound. This
was tested by looking at the mean angle that the agent moved with sound off
when the landmark was displaced. As shown in figure 3, the agent’s direction
is appropriate to the conditioning angle and follows the landmark displacement
consistently, for both the ‘treadmill’ scenario (figure 3a, closely comparable to
the biological data seen in figure 9 in [2]) and the more naturalistic ‘arena’
scenario (figure 3b). The system has associated each possible visual position of
the landmark with the movement required to re-orient so that the landmark falls
into the visual position it occupied during walking towards the sound.

4 Discussion and future work

Animal behaviour is a continuous closed loop, with sensory events transformed
by the agent into motor actions, and these actions transformed by the envi-
ronment into new sensory events. Neural learning mechanisms should thus be
evaluated in a closed loop context if they are to be considered biologically rel-
evant. A fundamental role of learning for behaving animals is associating the
reflex response to one cue with another cue that can refine, predict or substitute
for the original cue. In the bushcricket example used here, the visual information
can stabilise auditory localisation behaviour and be used to maintain the correct
heading when the sound is turned off. We have replicated this capability in a
simulation, using a plausible model of insect brain circuitry.

In future work we will evaluate the system using more realistic modelling of
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Fig. 3: Mean heading angle plotted versus landmark displacement. (a) The agent
can turn but does not move forward, simulating an insect on a treadmill. (b)
The agent can move through the environment. In each case the agent maintains
the appropriate relative heading as the landmark is displaced.

the input (auditory and visual) and output (motor) functions, with the eventual
aim of illustrating the same learning capabilities on a real robot. The same
neural architecture will also be tested for the related task of place memory, in
which a particular home location is associated with an array of landmarks, a
behaviour known to be dependent on the Mushroom Body in insects [4].
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