176 research outputs found
Anticholinesterase activity of endemic plant extracts from Soqotra
A total of 30 chloroform and methanol extracts from the following endemic Soqotran plants Acridocarpus socotranus Olive, Boswellia socotranao Balf.fil, Boswellia elongata Balf. fil., Caralluma socotrana N. Br, Cephalocroton socotranus Balf.f, Croton socotranus Balf. fil.., Dendrosicycos socotrana Balf.f., Dorstenia gigas Schweinf. ex Balf. fil., Eureiandra balfourii Cogn. & Balf. fil., Kalanchoe farinaceae Balf.f, Limonium sokotranum (Vierh) Radcl. Sm), Oldenlandia pulvinata, Pulicaria diversifolia( Balf. and Pulicaria stephanocarpa Balf. were screened for their acetylcholinesterase inhibitory activity by using in vitro Ellman method at 50 and 200 ÎŒg/ml concentrations. Chloroform extracts of Croton socotranus, Boswellia socotrana, Dorstenia gigas, and Pulicaria stephanocarpa as well as methanol extracts of Eureiandra balfourii exhibited inhibitory activities higher than 50 % at concentration of 200 ÎŒg. At a concentrations of 50 ÎŒg, the chloroform extract of Croton socotranus exhibited an inhibition of 40.6 %.Key words: plant extracts, acetylcholinesterase inhibitors, Soqotra, Alzheimerâs diseas
A multiplex approach of MS, 1D-, and 2D-NMR metabolomicsin plant ontogeny A case study on Clusia minor L. organs (leaf, flower, fruit, and seed)
Introduction
The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.
Objectives
The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.
Material and Methods
In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC-MS and 1H- and heteronuclear multiple-bond correlation (HMBC)-NMR-based metabolomics.
Results
This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5-hydroxy-8-methyltocotrienol (8.5âÎŒg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43âÎŒg/mg f.w.). Nemorosone and 5-hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5-hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50âÎŒg/mg f.w. Seeds as typical storage organ were rich in sugars and omega-6 fatty acids.
Conclusion
To the best of our knowledge, this is the first report on a comparative 1D-/2D-NMR approach to assess compositional differences in ontogeny studies compared with LC-MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed
Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum
Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored Hypericum species, a previously undescribed atropisomeric C8-C8â linked dimeric coumarin named bichromonol (1) was isolated from the stem bark of Hypericum roeperianum. The structure was elucidated by MS data and NMR spectroscopy. The absolute configuration at the biaryl axis was determined by comparing the experimental ECD spectrum with those calculated for the respective atropisomers. Bichromonol was tested in cell-based assays for cytotoxicity against MT-4 (CC50 = 54 ”M) cells and anti-HIV activity in infected MT-4 cells. It exhibits significant activity at EC50 = 6.6â12.0 ”M against HIV-1 wild type and its clinically relevant mutant strains. Especially, against the resistant variants A17 and EFVR, bichromonol is more effective than the commercial drug nevirapine and might thus have potential to serve as a new anti-HIV lead
ANTICHOLINESTERASE ACTIVITY OF ENDEMIC PLANT EXTRACTS FROM SOQOTRA
A total of 30 chloroform and methanol extracts from the following endemic Soqotran plants Acridocarpus socotranus Olive, Boswellia socotranao Balf.fil, Boswellia elongata Balf. fil., Caralluma socotrana N. Br, Cephalocroton socotranus Balf.f, Croton socotranus Balf. fil.., Dendrosicycos socotrana Balf.f., Dorstenia gigas Schweinf. ex Balf. fil., Eureiandra balfourii Cogn. & Balf. fil., Kalanchoe farinaceae Balf.f, Limonium sokotranum (Vierh) Radcl. Sm), Oldenlandia pulvinata, Pulicaria diversifolia( Balf. and Pulicaria stephanocarpa Balf. were screened for their acetylcholinesterase inhibitory activity by using in vitro Ellman method at 50 and 200 Ă”g/ml concentrations. Chloroform extracts of Croton socotranus, Boswellia socotrana, Dorstenia gigas, and Pulicaria stephanocarpa as well as methanol extracts of Eureiandra balfourii exhibited inhibitory activities higher than 50 % at concentration of 200 ĂŻÂg. At a concentrations of 50 ĂŻÂg, the chloroform extract of Croton socotranus exhibited an inhibition of 40.6 %
Influence of Pickling Process on Allium cepa and Citrus limon Metabolome as Determined via Mass Spectrometry-Based Metabolomics
Brine, the historically known food additive salt solution, has been widely used as a pickling media to preserve flavor or enhance food aroma, appearance, or other qualities. The influence of pickling, using brine, on the aroma compounds and the primary and secondary metabolite profile in onion bulb Allium cepa red cv. and lemon fruit Citrus limon was evaluated using multiplex metabolomics technologies. In lemon, pickling negatively affected its key odor compound âcitralâ, whereas monoterpene hydrocarbons limonene and Îł-terpinene increased in the pickled product. Meanwhile, in onion sulphur rearrangement products appeared upon storage, i.e., 3,5-diethyl-1,2,4-trithiolane. Profiling of the polar secondary metabolites in lemon fruit via ultra-performance liquid chromatography coupled to MS annotated 37 metabolites including 18 flavonoids, nine coumarins, five limonoids, and two organic acids. With regard to pickling impact, notable and clear separation among specimens was observed with an orthogonal projections to least squares-discriminant analysis (OPLS-DA) score plot for the lemon fruit model showing an enrichment of limonoids and organic acids and that for fresh onion bulb showing an abundance of flavonols and saponins. In general, the pickling process appeared to negatively impact the abundance of secondary metabolites in both onion and lemon, suggesting a decrease in their food health benefits
Copper-catalyzed diastereo- and enantioselective desymmetrization of cyclopropenes: Synthesis of cyclopropylboronates
This document is the accepted manuscript version of a Published Work that appeared in final form in Journal of American Chemical Society 136.45, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/ja510419zA novel Cu-catalyzed diastereo- and enantioselective desymmetrization of cyclopropenes to afford nonracemic cyclopropylboronates is described. Trapping the cyclopropylcopper intermediate with electrophilic amines allows for the synthesis of cyclopropylaminoboronic esters and demonstrates the potential of the approach for the synthesis of functionalized cyclopropanesWe thank the European Research Council (ERC-337776) and MINECO (CTQ2012-35957) for financial support. M. T. and A. P. thank MICINN for RyC and JdC contract
Identification of a Bacteria-produced Benzisoxazole with Antibiotic Activity against Multi-drug Resistant Acinetobacter baumannii
The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25âÎŒgâmlâ1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazoleâs antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole
Computational applications in secondary metabolite discovery (caismd): An online workshop
We report the major conclusions of the online open-access workshop âComputational Applications in Secondary
Metabolite Discovery (CAiSMD)â that took place from 08 to 10 March 2021. Invited speakers from academia and
industry and about 200 registered participants from fve continents (Africa, Asia, Europe, South America, and North
America) took part in the workshop. The workshop highlighted the potential applications of computational methâ
odologies in the search for secondary metabolites (SMs) or natural products (NPs) as potential drugs and drug leads.
During 3 days, the participants of this online workshop received an overview of modern computer-based approaches
for exploring NP discovery in the âomicsâ age. The invited experts gave keynote lectures, trained participants in handson sessions, and held round table discussions. This was followed by oral presentations with much interaction between
the speakers and the audience. Selected applicants (early-career scientists) were ofered the opportunity to give oral
presentations (15 min) and present posters in the form of fash presentations (5 min) upon submission of an abstract.
The fnal program available on the workshop website (https://caismd.indiayouth.info/) comprised of 4 keynote lecâ
tures (KLs), 12 oral presentations (OPs), 2 round table discussions (RTDs), and 5 hands-on sessions (HSs). This meeting
report also references internet resources for computational biology in the area of secondary metabolites that are of
use outside of the workshop areas and will constitute a long-term valuable source for the community. The workshop
concluded with an online survey form to be completed by speakers and participants for the goal of improving any
subsequent editions
- âŠ