179 research outputs found

    Transport timescales and tracer properties in the extratropical UTLS

    Get PDF
    A comprehensive evaluation of seasonal backward trajectories initialized in the Northern Hemisphere lowermost stratosphere (LMS) has been performed to investigate the origin of air parcels and the main mechanisms determining characteristic structures in H2O and CO within the LMS. In particular we explain the fundamental role of the transit time since last tropopause crossing (tTST) for the chemical structure of the LMS as well as the feature of the extra-tropical tropopause transition layer (ExTL) as identified from CO profiles. The distribution of H2O in the background LMS above Θ=320 K and 340 K in northern winter and summer, respectively, is found to be governed mainly by the saturation mixing ratio, which in turn is determined by the Lagrangian Cold Point (LCP) encountered by each trajectory. Most of the backward trajectories from this region in the LMS experienced their LCP in the tropics and sub-tropics. The transit time since crossing the tropopause from the troposphere to the stratosphere (tTST) is independent of the H2O value of the air parcel. TST often occurs 20 days after trajectories have encountered their LCP. CO, on the other hand, depends strongly on tTST due to its finite lifetime. The ExTL as identified from CO measurements is then explained as a layer of air just above the tropopause, which on average encountered TST fairly recently

    Processes determining heat waves across different European climates

    Get PDF
    This study presents a comprehensive analysis of processes determining heat waves across different climates in Europe for the period 1979–2016. Heat waves are defined using a percentile‐based index and the main processes quantified along trajectories are adiabatic compression by subsidence and local and remote diabatic processes in the upper and lower troposphere. This Lagrangian analysis is complemented by an Eulerian calculation of horizontal temperature advection. During typical summers in Europe, one or two heat waves occur, with an average duration of five days. Whereas high near‐surface temperatures over Scandinavia are accompanied by omega‐like blocking structures at 500 hPa, heat waves over the Mediterranean are connected to comparably flat ridges. Tracing air masses backwards from the heat waves, we identify three trajectory clusters with coherent thermodynamic characteristics, vertical motions, and geographic origins. In all regions, horizontal temperature advection is almost negligible. In two of the three clusters, subsidence in the free atmosphere is very important in establishing high temperatures near the surface, while the air masses in the third cluster are warmed primarily due to diabatic heating near the surface. Large interregional differences occur between the British Isles and western Russia. Over the latter region, near‐surface transport and diabatic heating appear to be very important in determining the intensity of the heat waves, whereas subsidence and adiabatic warming are of first‐order importance for the British Isles. Although the large‐scale pattern is quasistationary during heat wave days, new air masses are entrained steadily into the lower troposphere during the life cycle of a heat wave. Overall, the results of the present study provide a guideline as to which processes and diagnostics weather and climate studies should focus on to understand the severity of heat waves

    Unravelling the transport of moisture into the Saharan Air Layer using passive tracers and isotopes

    Get PDF
    The subtropical free troposphere plays a critical role in the radiative balance of the Earth. However, the complex interactions controlling moisture in this sensitive region and, in particular, the relative importance of long-range transport compared to lower-tropospheric mixing, remain unclear. This study uses the regional COSMO model equipped with stable water isotopes and passive water tracers to quantify the contributions of different evaporative sources to the moisture and its stable isotope signals in the eastern subtropical North Atlantic free troposphere. In summer, this region is characterized by two alternating large-scale circulation regimes: (i) dry, isotopically depleted air from the upper-level extratropics, and (ii) humid, enriched air advected from Northern Africa within the Saharan Air Layer (SAL) consisting of a mixture of moisture of diverse origin (tropical and extratropical North Atlantic, Africa, Europe, the Mediterranean). This diversity of moisture sources in regime (ii) arises from the convergent inflow at low levels of air from different neighbouring regions into the Saharan heat low (SHL), where it is mixed and injected by convective plumes into the large-scale flow aloft, and thereafter expelled to the North Atlantic within the SAL. Remarkably, this regime is associated with a large contribution of moisture that evaporated from the North Atlantic, which makes a detour through the SHL and eventually reaches the 850–550 hPa layer above the Canaries. Moisture transport from Europe via the SHL to the same layer leads to the strongest enrichment in heavy isotopes (δ2H correlates most strongly with this tracer). The vertical profiles over the North Atlantic show increased humidity and δ2H and reduced static stability in the 850–550 hPa layer, and smaller cloud fraction in the boundary layer in regime (ii) compared to regime (i), highlighting the key role of moisture transport through the SHL in modulating the radiative balance in this region

    The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy

    Get PDF
    The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided

    A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain

    Get PDF
    Raindrops interact with water vapour in ambient air while sedimenting from the cloud base to the ground. They constantly exchange water molecules with the environment and, in sub-saturated air, they evaporate partially or entirely. The latter of these below-cloud processes is important for predicting the resulting surface rainfall amount. It also influences the boundary layer profiles of temperature and moisture through evaporative latent cooling and humidity changes. However, despite its importance, it is very difficult to quantify this process from observations. Stable water isotopes provide such information, as they are influenced by both rain evaporation and equilibration (i.e. the exchange of isotopes between raindrops and ambient air). This study elucidates this option by introducing a novel interpretative framework for stable water isotope measurements performed simultaneously at high temporal resolution in both near-surface vapour and rain. We refer to this viewing device as the ΔδΔd-diagram, which shows the isotopic composition (δ2H, d-excess) of equilibrium vapour from precipitation samples relative to the ambient vapour. It is shown that this diagram facilitates the diagnosis of below-cloud processes and their effects on the isotopic composition of vapour and rain since equilibration and evaporation lead to different pathways in the two-dimensional phase space of the ΔδΔd-diagram, as investigated with a series of sensitivity experiments with an idealized below-cloud interaction model. The analysis of isotope measurements for a specific cold front in central Europe shows that below-cloud processes lead to distinct and temporally variable imprints on the isotope signal in surface rain. The influence of evaporation on this signal is particularly strong during periods with a weak precipitation rate. After the frontal passage, the near-surface atmospheric layer is characterized by higher relative humidity, which leads to weaker below-cloud evaporation. Additionally, a lower melting layer after the frontal passage reduces time for exchange between vapour and rain and leads to weaker equilibration. Measurements from four cold frontal events reveal a surprisingly similar slope of ΔdΔδ=−0.30 in the phase space, indicating a potentially characteristic signature of below-cloud processes for this type of rain event.publishedVersio

    A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe

    Get PDF
    This study presents a Lagrangian analysis of upper-tropospheric anticyclones that are connected to surface heat waves in different European regions for the period 1979 to 2016. In order to elucidate the formation of these anticyclones and the role of diabatic processes, we trace air parcels backwards from the upper-tropospheric anticyclones and quantify the diabatic heating in these air parcels. Around 25 %–45 % of the air parcels are diabatically heated during the last 3 d prior to their arrival in the upper-tropospheric anticyclones, and this amount increases to 35 %–50 % for the last 7 d. The influence of diabatic heating is larger for heat-wave-related anticyclones in northern Europe and western Russia and smaller in southern Europe. Interestingly, the diabatic heating occurs in two geographically separated air streams; 3 d prior to arrival, one heating branch (remote branch) is located above the western North Atlantic, and the other heating branch (nearby branch) is located over northwestern Africa and Europe to the southwest of the target upper-tropospheric anticyclone. The diabatic heating in the remote branch is related to warm conveyor belts in North Atlantic cyclones upstream of the evolving upper-level ridge. In contrast, the nearby branch is diabatically heated by convection, as indicated by elevated mixed-layer convective available potential energy along the western side of the matured upper-level ridge. Most European regions are influenced by both branches, whereas western Russia is predominantly affected by the nearby branch. The remote branch predominantly affects the formation of the upper-tropospheric anticyclone, and therefore of the heat wave, whereas the nearby branch is more active during its maintenance. For long-lasting heat waves, the remote branch regenerates. The results from this study show that the dynamical processes leading to heat waves may be sensitive to small-scale microphysical and convective processes, whose accurate representation in models is thus supposed to be crucial for heat wave predictions on weather and climate timescales

    Stratospheric influence on ECMWF sub‐seasonal forecast skill for energy‐industry‐relevant surface weather in European countries

    Get PDF
    Meteorologists in the energy industry increasingly draw upon the potential for enhanced sub‐seasonal predictability of European surface weather following anomalous states of the winter stratospheric polar vortex (SPV). How the link between the SPV and the large‐scale tropospheric flow translates into forecast skill for surface weather in individual countries – a spatial scale that is particularly relevant for the energy industry – remains an open question. Here we quantify the effect of anomalously strong and weak SPV states at forecast initial time on the probabilistic extended‐range reforecast skill of the European Centre for Medium‐Range Weather Forecasts (ECMWF) in predicting country‐ and month‐ahead‐averaged anomalies of 2 m temperature, 10 m wind speed, and precipitation. After anomalous SPV states, specific surface weather anomalies emerge, which resemble the opposing phases of the North Atlantic Oscillation. We find that forecast skill is, to first order, only enhanced for countries that are entirely affected by these anomalies. However, the model has a flow‐dependent bias for 2 m temperature (T2M): it predicts the warm conditions in Western, Central and Southern Europe following strong SPV states well, but is overconfident with respect to the warm anomaly in Scandinavia. Vice versa, it predicts the cold anomaly in Scandinavia following weak SPV states well, but struggles to capture the strongly varying extent of the cold air masses into Central and Southern Europe. This tends to reduce skill (in some cases significantly) for Scandinavian countries following strong SPV states, and most pronounced, for many Central, Southern European, and Balkan countries following weak SPV states. As most of the weak SPV states are associated with sudden stratospheric warmings (SSWs), our study thus advices particular caution when interpreting sub‐seasonal regional T2M forecasts following SSWs. In contrast, it suggests that the model benefits from enhanced predictability for a considerable part of Europe following strong SPV states
    corecore