182 research outputs found

    Fast Numerical simulations of 2D turbulence using a dynamic model for Subgrid Motions

    Full text link
    We present numerical simulation of 2D turbulent flow using a new model for the subgrid scales which are computed using a dynamic equation linking the subgrid scales with the resolved velocity. This equation is not postulated, but derived from the constitutive equations under the assumption that the non-linear interactions of subgrid scales between themselves are equivalent to a turbulent viscosity.The performances of our model are compared with Direct Numerical Simulations of decaying and forced turbulence. For a same resolution, numerical simulations using our model allow for a significant reduction of the computational time (of the order of 100 in the case we consider), and allow the achievement of significantly larger Reynolds number than the direct method.Comment: 35 pages, 9 figure

    Forced Stratified Turbulence: Successive Transitions with Reynolds Number

    Full text link
    Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number, Ri, everywhere. At higher values of R there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.Comment: 8 pages, 5 figures (submitted to Phys. Rev. E

    Calibrating the Mixing Length Parameter for a Red Giant Envelope

    Get PDF
    Two-dimensional hydrodynamical simulations were made to calibrate the mixing length parameter for modeling red giant's convective envelope. As was briefly reported in Asida & Tuchman (97), a comparison of simulations starting with models integrated with different values of the mixing length parameter, has been made. In this paper more results are presented, including tests of the spatial resolution and Large Eddy Simulation terms used by the numerical code. The consistent value of the mixing length parameter was found to be 1.4, for a red giant of mass 1.2 solar-mass, core mass of 0.96 solar-mass, luminosity of 200 solar-luminosities, and metallicity Z=0.001.Comment: 18 pages, 1 table, 13 figures. Accepted for publication in Ap.

    Use of 16S rRNA Gene Based Clone Libraries to Assess Microbial Communities Potentially Involved in Anaerobic Methane Oxidation in a Mediterranean Cold Seep

    Get PDF
    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22–34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0–6 cm). Communities in the middle layer (6–22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study

    Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values

    Get PDF
    PURPOSE: To compare the relationship of Octopus perimeter cluster mean-defect (cluster MD) values with the spatially corresponding optical coherence tomography (OCT) sector peripapillary angioflow vessel-density (PAFD) and sector retinal nerve fiber layer thickness (RNFLT) values. METHODS: High quality PAFD and RNFLT images acquired on the same day with the Angiovue/RTVue-XR Avanti OCT (Optovue Inc., Fremont, USA) on 1 eye of 27 stable early-to-moderate glaucoma, 22 medically controlled ocular hypertensive and 13 healthy participants were analyzed. Octopus G2 normal visual field test was made within 3 months from the imaging. RESULTS: Total peripapillary PAFD and RNFLT showed similar strong positive correlation with global mean sensitivity (r-values: 0.6710 and 0.6088, P<0.0001), and similar (P = 0.9614) strong negative correlation (r-values: -0.4462 and -0.4412, P</=0.004) with global MD. Both inferotemporal and superotemporal sector PAFD were significantly (</=0.039) lower in glaucoma than in the other groups. No significant difference between the corresponding inferotemporal and superotemporal parameters was seen. The coefficient of determination (R2) calculated for the relationship between inferotemporal sector PAFD and superotemporal cluster MD (0.5141, P<0.0001) was significantly greater than that between inferotemporal sector RNFLT and superotemporal cluster MD (0.2546, P = 0.0001). The R2 values calculated for the relationships between superotemporal sector PAFD and RNFLT, and inferotemporal cluster MD were similar (0.3747 and 0.4037, respectively, P<0.0001). CONCLUSION: In the current population the relationship between inferotemporal sector PAFD and superotemporal cluster MD was strong. It was stronger than that between inferotemporal sector RNFLT and superotemporal cluster MD. Further investigations are necessary to clarify if our results are valid for other populations and can be usefully applied for glaucoma research

    Workshop report: PlioWest-drilling Pliocene lakes in western North America

    Get PDF
    The Pliocene Epoch is a focus of scientific interest as a period of sustained global warmth, with reconstructed CO2 concentrations and a continent configuration similar to modern. Numerous studies suggest that the Pliocene was warmer and largely wetter than today, at least in the subtropics, which contrasts with the long-Term hydroclimatic response of drying conditions predicted by most climate model simulations. Two key features of Pliocene warmth established from sea surface temperature reconstructions could affect dynamic changes that influence the hydrologic cycle: (1) a weaker Pliocene zonal gradient in sea surface temperature (SST) between the western and eastern equatorial Pacific resembling El Niño-like conditions and (2) polar-Amplified Pliocene warmth, supporting a weaker Equator-To-pole temperature gradient. The distribution of wet conditions in western North America and the timing of late Pliocene-Quaternary aridification offer the potential to evaluate the relative roles of these two external forcings of the climate in western North America, with broader global implications for Mediterranean-Type climate (MTC) regions. We convened a virtual ICDP workshop that spanned a 2-week period in September 2021, to choose optimal drill sites and legacy cores to address the overall scientific goals, flesh out research questions, and discuss how best to answer them. A total of 56 participants from 12 countries (17 time zones), representing a wide range of disciplines, came together virtually for a series of plenary and working group sessions. We have chosen to study five basins (Butte Valley, Tule Lake, Lake Idaho, Searles Lake, and Verde Valley) that span 7g of latitude to test our hypotheses and to reconstruct the evolution of western North American hydroclimate with special focus on the time ranges of 4.5-3.5 and 3-2.5gMyr. Although individual Pliocene lake records occur in many areas of the world, the western North American basins are unique and globally significant as deep perennial freshwater Pliocene lakes latitudinally arrayed in a MTC region and are able to capture a response to Pacific forcing. We propose new drill cores from three of these basins. During the workshop, we discussed the stratigraphy and subsurface structure of each basin and revised the chronological frameworks and the basin-To-basin correlations. We also identified the best-suited proxies for hydroclimate reconstructions for each particular basin and put forward a multi-Technique strategy for depth-Age modeling. Reconstructions based on data from these sites will complement the SST reconstructions from global sites spanning the last 4.5gMa and elucidate the large-scale hydrological cycle controls associated with both global warming and cooling

    On the Long Lasting “C‐Type” Structures in the Sodium Lidargram: The Lifetime of Kelvin‐Helmholtz Billows in the Mesosphere and Lower Thermosphere Region

    Get PDF
    In order to understand the characteristics of long‐lasting “C‐type” structure in the Sodium (Na) lidargram, six cases from different observational locations have been analyzed. The Na lidargram, collected from low‐, middle‐, and high‐latitude sites, show long lifetime of the C‐type structures which is believed to be the manifestation of Kelvin‐Helmholtz (KH) billows in the Mesosphere and Lower Thermosphere (MLT) region. In order to explore the characteristics of the long‐lasting C‐type structures, the altitude profile of square of Brunt‐Väisälä frequency in the MLT region has been derived using the temperature profile collected from the Na lidar instruments and the SABER instrument onboard TIMED satellite. It is found to be positive in the C‐type structure region for all the six cases which indicates that the regions are convectively stable. Simultaneous wind measurements, which allowed us to calculate the Richardson numbers and Reynolds numbers for three cases, suggest that the regions where the C‐type structure appeared were dynamically stable and nonturbulent. This paper brings out a hypothesis wherein the low temperature can increase the magnitude of the Prandtl number and convectively stable atmospheric region can cause the magnitude of Reynolds number to decrease. As a consequence, the remnant of previously generated KH billows in nearly “frozen‐in” condition can be advected through this conducive region to a different location by the background wind where they can sustain for a long time without much deformation. These long‐lived KH billows in the MLT region will eventually manifest the long‐lasting C‐type structures in the Na lidargram

    An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.

    Get PDF
    Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values
    corecore