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émanant des établissements d’enseignement et de
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This paper provides a prescription for the turbulent viscosity in rotating shear flows for use e.g. in
geophysical and astrophysical contexts. This prescription is the result of the detailed analysis of the
experimental data obtained in several studies of the transition to turbulence and turbulent transport
in Taylor-Couette flow. We first introduce a new set of control parameters, based on dynamical
rather than geometrical considerations, so that the analysis applies more naturally to rotating shear
flows in general and not only to Taylor-Couette flow. We then investigate the transition thresholds
in the supercritical and the subcritical regime in order to extract their general dependencies on the
control parameters. The inspection of the mean profiles provides us with some general hints on
the mean to laminar shear ratio. Then the examination of the torque data allows us to propose a
decomposition of the torque dependence on the control parameters in two terms, one completely
given by measurements in the case where the outer cylinder is at rest, the other one being a universal
function provided here from experimental fits. As a result, we obtain a general expression for the
turbulent viscosity and compare it to existing prescription in the literature. Finally, throughout all
the paper we discuss the influence of additional effects such as stratification or magnetic fields.

PACS numbers:

I. INTRODUCTION

One of the basic principle of fluid mechanics is the
so-called ”Reynolds similarity principle”: no matter
their composition, size, nature, different flow obeying
the same equations with the same control parameters
will follow the same dynamics. This principle has been
used a lot in engineering to built e.g. prototypes of
bridges to be tested in wind tunnels before construc-
tion. To obtain easy-to-use prototypes with realistic
control parameters, one then decreases the size but
increases the velocity of the in-flowing wind so as to
keep constant the Reynolds number, controlling the
dynamics of the flow. This principle could also be of
great interest for certain astrophysical flows, whose
dynamics could well be approached by simple labora-
tory flows. A good example is circum-stellar disk. In
[1], it has been shown that under simple, but founded
approximations, their equation of motions were sim-
ilar to the equation of motion of an incompressible
rotating shear flow, with penetrable boundary con-
ditions and cylindrical geometry. This kind of flow
can be achieved in the Couette-Taylor flow, a fluid
layer sheared between two coaxial cylinders rotating
at different speed, while penetrable boundary condi-
tions can be obtained using porous material. On more
general grounds, the Taylor-Couette device is also an

excellent prototype to study transport properties of
most astrophysical or geophysical rotating shear flows:
depending on the rotation speed of each cylinder, one
can obtain various flow regimes with increasing or de-
creasing angular velocity and/or angular momentum.
The Taylor-Couette flow is a classical example of

simple system with complex and rich stability prop-
erties, as well as prototype of anisotropic, inhomoge-
neous turbulence. It has therefore motivated a great
amount of laboratory experiments, and is even the
topic of a major international conference. Tagg (see
http://carbon.cudenver.edu/r̃tagg) has conducted a
bibliography on Taylor-Couette flow, which gives a
good idea of the prototype status of this flow.
Here, we make use of the many results obtained so

far for the Taylor-Couette experiment, regarding tran-
sition to turbulence, or turbulence properties to pro-
pose a practical prescription for the turbulent viscos-
ity as a function of the radial position and the control
parameters. It reads

νt =
1

2π
RC

4Gi(Re, η)

Re2
h(RΩ, η)

Slam

S̄
S̃r̃2, (1)

where Re,RΩ, RC are the control parameters (Section
II B), Gi(Re, η) is the torque measured when only
the inner cylinder is rotating (Section VD), h(RΩ, η)
is a universal function provided in Section VD, and

http://arxiv.org/abs/1106.1276v1
http://carbon.cudenver.edu/~rtagg
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Slam/S̄ is the ratio of the laminar to the mean shear,
which encodes all the radial dependence as illustrated
in Section VD. S̃ and r̃ are typical shear and radius
of the considered flow. Most of the results we use
here have been published elsewhere, except recent ex-
perimental results obtained by Richard [2]. Our work
therefore completes and generalizes the approach pio-
neered by Zeldovich [3], with subsequent contributions
by [4–6], in which usually only one aspect of the ex-
periments has been considered.
An application of these findings to circumstellar

disks using the Reynolds similarity principle can be
found in Hersant et al. [1] thereby providing a physical
explanation of several observable indicators of turbu-
lent transport.

II. TAYLOR-COUETTE FLOW

A. Stationary flow

The Taylor-Couette flow is obtained in the gap d be-
tween two coaxial rotating cylinders of radii ri,o, rotat-
ing at independent velocities Ωi,o. For the purpose of
generality and to allow further comparison with astro-
physical flows, the velocity field at the inner cylinder
boundary may have a non-zero radial component.
The hydrodynamic equation of motions for an in-

compressible flow are given by:

∂tu+ u·∇u = −1

ρ
∇p+ ν∆u,

∇ · u = 0. (2)

where ρ and ν are respectively the fluid density and
kinematic viscosity, u is the velocity, and p is the pres-
sure. Equation (2) admits a simple basic stationary
solution, with axial and translation symmetry along
the cylinders rotation axis (the velocity only depends
on r). It is given by a flow with zero vertical velocity,
and radial and azimuthal velocity given by:

ur =
K

r
,

uθ = Ar1+α +
B

r
, (3)

where A and B are constants and α = K/ν. This
basic laminar state depends on three constants A, B
and K, which can be related to the rotation velocities
at the inner and outer boundaries[7]:

A =
r−α
o

1− ηα+2

(

Ωo − η2Ωi

)

,

B =
r2i

1− ηα+2
(Ωi − Ωoη

α) , (4)

where η = ri/ro and α = K/ν = ur(ri)ri/ν is the
radial Reynolds number, based on the radial velocity
through the wall of the inner cylinder.
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FIG. 1: Influence of the radial circulation onto the az-
imuthal profile. Line: case α = 0; �: α = −1; � α = 1;
◦: α = −10; •: α = 10. The upper panel is with
Ωi/Ωo = 0.86; the lower panel is with Ωi/Ωo = 0. The
radius ratio ri/ro has been arbitrarily fixed at 0.7

The radial circulation is quantified by the value of
α. It is positive for outward motions. For imperme-
able cylinders, α = K = 0 and one has the ”classical”
Taylor-Couette flows. For a porous internal cylinder,
one obtains a Taylor-Couette flow with radial circu-
lation. The strength of the radial circulation can be
controlled by using more or less porous cylinders [8]).
Fig. 1 provides an example of the influence of the ra-
dial circulation on the azimuthal profile.

In practice, even for impermeable cylinders, the flow
is not purely azimuthal. Because of the finite ver-
tical extent of the apparatus, a large-scale – Ekman
– circulation is established through the effect of the
top and bottom boundaries. This circulation depends
on the ratio of radii and velocities, and on the top
and bottom boundary conditions [2, 9]. Its signature
is easy to detect by profile monitoring, or by mea-
suring the difference between the torque at the inner
and outer cylinder [10]. Of course this circulation is
both radial and vertical and it varies along the cylin-
ders axis. Also its intensity is not easy to control,
since it is not fixed externally, but results from a non-
trivial equilibrium within the flow. Still, at a given
axial position, one may estimate this intensity by a fit
of laminar profile using (3) and (4). To simplify the
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exploration of the parameter space, we shall restrict
ourselves to the case of α ∼ 0, and study separately
the influence of this parameter. In the laboratory,
minimizing circulation effect is achieved by working
with tall cylinders and consider only a fraction of the
flow located at a distance to the top of about 1/3 of
the total height, where the radial velocity is expected
to be the weakest. Specific influence of α on stability
and transport properties will be considered in Section
IIID and VE2.

B. Control parameters

Dimensional considerations show that there are
only four independent non-dimensional numbers to
characterize the system, which can be chosen in vari-
ous ways.

1. Traditional choice

The traditional choice is to consider d = ro − ri as
the unit length, and d2/ν as the unit time. With this
choice, the dimensionless equations of motions are:

∂tu
∗ + u

∗·∇u
∗ = −∇p∗ +∆u

∗,

∇ · u∗ = 0, (5)

with boundary conditions :

u
∗(ri) = (α(1 − η)/η,Ri, 0)

u
∗(ro) = (α(1 − η), Ro, 0) (6)

where :

α =
riur(ri)

ν
,

η =
ri
ro

,

Ri =
riΩid

ν
,

Ro =
roΩod

ν
. (7)

In the following, we will omit the star superscript indi-
cating non-dimensional quantity. The present choice
of unit amounts to define the control parameters by
non-dimensional boundary conditions. When compar-
ing flows that do not share identical geometry, it is of
interest to identify control parameters characterizing
the dynamical properties of the flows.

2. Dynamics motivated choice

In the case of rotating shear flows, it is convenient
to write the equations in an arbitrary rotating frame
with angular velocity Ωrf , choose d as unit length, the

inverse of a typical shear S̃ as unit time and r̃ as a
typical radius. Furthermore, it is useful to introduce
the ”advection shear term” proposed in [6, 11]

w.∇′
w ≡ w.∇(wrer)+[rw.∇(wφ/r)]eφ+w.∇(wzez).

(8)
so that the contribution of the mean flow derivative to
the modified advection term vanishes when the flow
is not sheared, for azimuthal axisymmetric flow. As a
result, one has

∂tw +w·∇′
w = −∇π −RΩez ×w

+RC

(

wφ
2

r/r̃
er −

wφwr

r/r̃
eφ

)

+Re−1∆w,

∇ ·w = 0, (9)

with boundary conditions :

w(ri,o) = u(ri,o)−
RΩ

2RC

r

r̃
eφ (10)

where :

Re =
S̃d2

ν

RΩ =
2Ωrf

S̃
(11)

RC = d/r̃ (12)

are the dynamical control parameters for a given ra-
dial circulation α. Re is an azimuthal Reynolds num-
ber, measuring the influence of shear. RΩ is a rotation
number, measuring the influence of rotation. Note
that π now also includes the centrifugal force term.
In this general formulation, one is free to choose

Ωrf . It is convenient to choose Ωrf as a typical rate of

rotation Ω̃ so that one can easily compare the Taylor-
Couette case to the case of a plane shear in a ro-
tating frame. For instance one can choose Ωrf so
that wθ(ri) = −wθ(ro) in order to restore the symme-
try between the two walls boundary conditions. This
choice of Ω̃ amounts to fix r̃ by Ω(r̃) = Ω̃. For con-

sistency, it is then convenient to choose S̃ = Slam(r̃).
In this context and with α = 0, it is easy to relate
the above control parameters (Re,RΩ, RC) to the tra-
ditional choice (Ri, Ro, η) :

r̃ =
√
riro,

Re =
S̃d2

ν
=

2

1 + η
|ηRo −Ri|,

RΩ =
2Ω̃

S̃
= (1− η)

Ri +Ro

ηRo −Ri
,

RC =
1− η

η1/2
. (13)

The above control parameters have been introduced
so that their definition apply to rotating shear flows



4

in general and not only to the Taylor-Couette geom-
etry. It is very easy in this formulation to relate the
Taylor-Couette flow to the plane Couette flow with
rotation, by simply considering the limit RC → 0.
Also, in the astrophysical context, one often consid-
ers asymptotic angular velocity profiles of the form
Ω(r) ∼ r−q where q then fully characterizes the flow.
In that case q = −∂ lnΩ/∂ ln r = −2/RΩ, which is
a simple relation to situate astrophysical profiles in
the control parameters space of the Taylor-Couette
flows. From the hydrodynamic viewpoint, an impor-
tant characteristic of the flow profile is the sign of the
shear compared to the sign of the angular velocity,
which defines cyclonic and anticylonic flows. For the
co-rotating laminar Taylor-Couette flow, the sign of
the local ratio Ω(r)/S(r) is constant across the whole
flow and is thus simply given by the sign of the rota-
tion number (RΩ > 0 for cyclonic flows and RΩ < 0
for anticylonic flows). Finally let us recall that an
analogy exist between Taylor-Couette and Rayleigh-
Bénard convection (see [12] for details and [13] for a
review), which calls for an even larger generalization
of the control parameters definition.
Figure 2 displays the characteristic values taken

by the new parameters in the usual parameter space
(Ri, Ro) for co-rotating cylinders. It also helps to sit-
uate cyclonic and anti-cyclonic flows, as well as pro-
totypes of astrophysical flows.

III. STABILITY PROPERTIES

A. Inviscid limit and data sources for viscid

flows

As usual when considering stability properties, one
must distinguish stability against infinitesimal distur-
bances – linear stability – from that against finite am-
plitude ones – non-linear stability. When the basic
flow is unstable against finite amplitude disturbance,
but linearly stable, it is called subcritical, by contrast
with the supercritical case for which the first possi-
ble destabilization is linear (see [14, 15] for further
details).
In the inviscid limit (Re → ∞), and for axisymmet-

ric disturbances, the linear stability properties of the
flow are governed by the Rayleigh criterion. The fluid
is stable if the Rayleigh discriminant is everywhere
positive:

Ω

r
∂rL(r) > 0, (14)

where L(r) = r2Ω(r) is the specific angular momen-
tum. Applying this criterion to the laminar profile
leads to

(RΩ + 1)(RΩ + 1− r̃2/r2) > 0. (15)

Since r̃/r varies between 1/η and η, one obtains that in
the inviscid limit, the flow is unstable against infinites-
imal axisymmetric disturbances when R∞

Ω
− < RΩ <

R∞
Ω

+, where R∞
Ω

− = −1, respectively R∞
Ω

+ = 1/η−1,
are the marginal stability thresholds in the inviscid
limit (superscript ∞) in the cyclonic case (RΩ > 0,
subscript +), respectively anticyclonic case (RΩ < 0,
subscript −). These Rayleigh limits are also displayed
on figure 2, where they have to be seen as asymptotic.
As a matter of fact, this information is rather poor :

• non-axisymmetric disturbances can be more
destabilizing than axisymetric ones, so that the
flow could be linearly unstable in part of the
linearly stable domain;

• viscous damping will probably reduce the lin-
early unstable domain;

• finally, finite amplitude disturbances may seri-
ously reduce the stable domain.

In the following, assuming that the axisymmetric
disturbances are indeed the most dangerous one at the
linear level – which up to now is validated both exper-
imentally and numerically –, we will consider the two
last items. On one side, we will review the existing re-
sults on the effect of viscosity in the supercritical case,
which will provide us with a critical Reynolds num-
ber as a function of the other parameters Rc(RΩ, η).
On the other side, we will investigate the subcritical
stability limit, when the flow is linearly stable and
try to figure out what is the behavior of the min-
imal Reynolds number for self-sustained turbulence
Rg(RΩ, η).
These boundaries can be estimated via different

tools, depending of the type of experiment and avail-
able measurements. In numerical experiments, the
simplest way to estimate the stability boundary in the
linear case is through a modal decomposition and a
monitoring of real part of the largest eigenvalue. In
laboratory experiments, at least three different tools
have been used: i) torque measurements; ii) flow vi-
sualization; iii) mean velocity profile measurements.
Torque measurements have been traditionally used in
the past [9, 16]. Their advantage is their accuracy
and their flexibility to detect other transition at larger
Reynolds numbers. Their inconvenience is their diffi-
culty of implementation in the case where both cylin-
ders are rotating. Flow visualizations allow discrimi-
nating between laminar and turbulent flows but suffer
from the lack of quantitative information on the flow.
Mean velocity profile measurement is a third alterna-
tive, which allows determination of critical Reynolds
number from deviation of velocity profiles with respect
to laminar value, or changes of regime. This tech-
nique is more local in nature, and requires advanced
techniques of in-flow measurements. In the sequel, we
shall use data from several sources, described in ta-
ble I. Except for the data of Richard, all of them have
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FIG. 2: Parameters space and some TC flow properties for
co-rotating cylinders (η = 0.72). Flows with positive gra-
dient of angular momentum L = r2Ω but negative (resp.
positive) gradient of angular velocity are referred to as
Keplerian (resp. stellar). The shaded area corresponds to
Rayleigh unstable flows (supercritical case).

been published. Those by Richard are available in his
thesis manuscript [2]. We take the opportunity of this
synthesis to integrate them in a larger perspective.

η RΩ source

1 [0, 0.1] Tillmark et al. [17]

0.983 ≃ 0 Prigent et al. [18]

0.724 −0.276 Lewis et al. [19]

0.7 [0, 0.6] Richard [2]

0.7 [−1.5,−1] Richard [2]

[0.79, 0.97] 1/η − 1 Taylor [16]

0.68, 0.85, 0.93 [−0.7, 0.5] Wendt [9]

TABLE I: Experimental data and sources

B. Super-critical case

Numerous experimental set ups were used to study
the stability boundary in the linear case, starting from
the early experiments of Couette [20], Taylor [21], and
Donnelly and Fultz [22]. The viscosity damps the in-
stability until Re > Rc(RΩ, η), corresponding to the
transition from the laminar flow to the so-called Tay-
lor vortices flow. Figure 3 displays the numerical data
by Snyder [23], providing the stability threshold Rc as
a function ofRΩ for three gap size (η = 0.935, 0.8, 0.2),
and illustrates the influence of the curvature on the in-
stability threshold. The experimental data of Prigent
et al. [18], at η = 0.983 is also reported.

100

1000

-1.5 -1 -0.5 0 0. 5 1

R
e

R
Ω

FIG. 3: The linear stability boundary. Numerical data by
Snyder ⊞: η = 0.2; △: η = 0.8, ⊙ η = 0.935. Experi-
mental data by Prigent et al. ∇: η = 0.983. Continuous
line: Lezius and Johnston plane Couette or small gap limit
stability criteria. Dashed line : Esser and Grossman pre-
diction for η = 0.8 and η = 0.2.

As η → 1 (rotating plane Couette limit), the sta-
bility curve becomes symmetric around RΩ = −1/2
and diverges at RΩ = 0 or −1. This is in agreement
with the linear stability criterion for the rotating plane
Couette flow [24–26], a generalization of the first ex-
act result giving the linear stability of the non-rotating
plane Couette flow for all Reynolds number [27]. The
observed symmetry actually reflects symmetry in the
rotating plane Couette. The linearized equations of
motions are invariant by the transformation exchang-
ing streamwise and normal to the walls coordinates
and velocities (corresponding to exchanging r with φ
and ur and uφ, in Taylor-Couette). This transforma-
tion changes RΩ into −1 − RΩ, hence the symmetry
around RΩ = −1/2. When η becomes smaller than 1,
curvature enters into play and breaks the symmetry
resulting in less and less symmetrical curves, as can
be observed for η = 0.2.

The above stability boundary can be recovered nu-
merically by classical stability analysis, using e.g. nor-
mal mode analysis with numerical solutions [28]. In-
terestingly a very good approximate analytical for-
mula in the whole parameter space has recently been
derived by Esser and Grossmann [29]. It is:

R2
c (RΩ + 1)

(

RΩ + 1− 1

ηx2

)

=

−1708

(

(1− η)

2η(x(η) − 1)

)4

, (16)

with

x(η) = 1 +
1− η

2η
∆

(

a(η)
dn
d

)

,
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dn
d

=
η

1− η

(

1
√

η(RΩ + 1)
− 1

)

,

a(η) = (1− η)

(
√

(1 + η)3

2(1 + 3η)
− η

)−1

, (17)

where ∆(x) is a function equal to x if x < 1 and equal
to 1 if x > 1. Continuous lines on figure 3 give a good
insight on the validity of the above formula. Let us
underline that in the absence of the above formula,
small and wide gap approximations were often used.
Whereas the small gap approximation

Rsg
c =

√

1708

−RΩ(RΩ + 1)
. (18)

works rather well until η = 0.8, the large gap one

ηRwg
c =

√

1708

4

1

Θ(RΩ + 1)
, (19)

where Θ(x) is the Heavyside function, remains a very
poor approximation even for η = 0.2. Note that
the formula (16) defines two critical rotation num-
ber for which the critical Reynolds number diverges:
Rc−

Ω = −1 and Rc+
Ω such that Rc+

Ω = −1+1/ηx2. This
number has been computed for various 0.7 < η < 1
and is shown on figure 4. One sees that it is very well
approximated by the formula Rc+

Ω = (1 − η)/η. This
remark is used in the next section.
In this supercritical situation, the flow undergoes

several other bifurcations following the first linear in-
stability and turns into more and more complex pat-
terns, eventually leading to turbulence. Interestingly,
at much larger Reynolds number, an additional tran-
sition have been reported [30]. One indeed observes
a change in the torque dependence on the Reynolds
number, which could be associated with a feature-
less turbulence regime. Sometime called ”hard tur-
bulence”, this regime is observed for Re > RT . For
reasons that will become clearer, we defer its discus-
sion after study of the torque.

C. Sub-critical case

In the absence of general theory for globally sub-
critical transition to turbulence, the non-linear stabil-
ity boundary has only been explored experimentally.
Wendt [9] and Taylor [16] consider the case with inner
cylinder at rest, corresponding to RΩ = 1/η−1 > 0, at
various gap size, using torque measurements. A more
recent experiment by Richard [2] explores the domain
−1.5 < RΩ < −1 and RΩ > 0.5, at fixed gap size
η = 0.7, using flow visualizations. Finally one also
has the measurement conducted in a rotating plane
Couette flow (η = 1) by Tillmark and Alfredsson [17]
for RΩ > 0. The corresponding results are reported

0
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0.4

0.6

0.8

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
c Ω

+

η

FIG. 4: The critical rotation number Rc+
Ω as a function of

the gap size η. �: Computed from the analytic formula of
Esser and Grossman. Plain line: (1− η)/η.

on figure 5, giving Rg as a function of RΩ for different
value of η.

1000

104

105

-1.5 -1 -0.5 0 0.5

R
e

R
Ω

FIG. 5: The non-linear stability boundary. Cyclonic flow:
△: Taylor data with inner cylinder at rest and 0.7 < η <
0.935; ◦: Richard data with η = 0.7; ♦: Tilmark data for
rotating plane Couette flow η = 1; dotted line: linear fit
of Tilmark’s data; plain line: linear fit of Richard’s data.
Anticyclonic flow: •: Richard data with η = 0.7; plain
line: linear fit of Richard’s data.

One must be very cautious when looking at this
naive representation of the data, especially on the cy-
clonic side. First, the data are presented for different
values of η. Especially for the data of Taylor (△),
each point is a different η. The fact that the data
look aligned through all values of η is an artifact of
the representation as illustrated by the extrapolation



7

of the linear fit of Tillmark’s data. Second, looking
at this figure RΩ = 0 seems to play a similar role in
the cyclonic regime than RΩ = −1 in the anticyclonic
case. As we have seen above, when studying the lin-
ear stability, this is true for η = 1 only. As discussed
in previous section, the correct value of the marginal
stability is approximately equal to the inviscid limit
for the cyclonic case Rc+

Ω ≈ R∞
Ω

+ = 1/η − 1. Tay-
lor’s data are actually given at this precise value of
RΩ, because Taylor performed his experiments with
the internal cylinder at rest. This condition imposes
RΩ = 1/η− 1, which coincides with the marginal sta-
bility limit. In the following, we shall try to extract
from this data the maximal knowledge about the de-

pendence of Rg
(+,−) on RΩ and η, both in the cyclonic

and anticyclonic case.

All the data about the manifold Rg
(+,−)(RΩ, η) are

obtained close to its intersection with the manifold
RΩ = Rc

Ω
(+,−). Therefore one first has to estimate the

locus of the intersection between these two manifolds
that is Rg

(+,−)(Rc
Ω
(+,−)(η), η) = f (+,−)(η), then the

variation of Rg
+ with RΩ, close to the manifold, at

the intersection.
Let us first consider the cyclonic case. One can

take benefit of Taylor’s and Wendt’s data to estimate
f+(η) as proposed by Richard and Zahn [5]. The fact
that the data are read from the original figure of Tay-
lor and Wendt however induces a natural error bar
in the determination of the critical Reynolds number,
as illustrated on figure 6, where several estimates, ob-
tained by different authors, are reported.
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FIG. 6: Subcritical thresholds in the cyclonic regime, ob-
tained with the inner cylinder at rest, that is RΩ = RΩ

c+.
�: Wendt’s data; △: Taylor’s data; ◦: Richard’s data;
plain and dotted line: fit of f+(η) = Rg

+(Rc
Ω
+(η), η)

(see text for details). The size of the symbol denotes dif-
ferent estimate by Richard and Zahn (small), Zeldovich
(medium) and present authors (large) based on published
figures of Taylor and Wendt.

Because of this error, it is difficult to give a precise
fit of the function f+. One sees that the quadratic

regime in 1−η given by f+(η) = 1400+550000(1−η)2

and proposed by Richard and Zahn provides a good
upper estimate of the function. A linear trend in 1−η,
with slope 136000 gives a good lower estimate of the
data for 1 − η < 0.1, as shown on figure 6. Clearly,
more precise estimate of this function using modern
data will be welcome. Note that at η → 1, the func-
tion tends to a constant f+(1) = 1400 that is nothing
but RPC

g = 1400, the global stability threshold mea-
sured independently by Tillmark and Alfredsson [17]
and Dauchot and Daviaud [31] in the non-rotating
plane Couette flow. The second step is to propose
a linear development in RΩ−Rc

Ω
+, close to the above

estimate:

R+
g (RΩ, η) = f+(η) + a+(η)

(

RΩ −Rc
Ω
+(η)

)

. (20)

For η = 1 one recovers the linear fit proposed by
Tillmark and Alfredson (plotted and extrapolated on
fig 5) for the rotating plane Couette flow:

R+
g (RΩ, η = 1) = 1400 + 26000RΩ. (21)

that is a+(η = 1) = 26000. For η = 0.7, the linear fit
of Richard’s data (plotted and extrapolated on fig 5)
leads to a+(η = 0.7) = 59000.
In the anticyclonic case, the situation is simpler be-

cause Rc
Ω
− = −1, does not depend on η. On the other

hand, data are available for a unique value η = 0.7, so
that one cannot estimate f−(η). The only fit that can
be performed in this state of experimental knowledge
is:

R−
g (RΩ, 0.7) = f−(0.7)+a−(0.7) | RΩ−Rc

Ω
− | . (22)

One finds f−(0.7) = 1300 and a−(0.7) = 21000 and
the fit is displayed on figure 5. In the anticyclonic
regime, at least for this value of η, one recovers a
dependence on the rotation similar to that of the plane
Couette flow. Also remarkable is the fact that f− is
so close to RPC

g in the non-rotating case.
Altogether the data collected to date suggest that,

in the linearly stable regime, the Reynolds number
of transition to subcritical turbulence be well repre-
sented by

R±
g (RΩ, η) = f±(η) + a±(η)|RΩ −Rc,±

Ω |, (23)

with 1× 105(1− η)1 < f+(η) < 1400 + 5.5× 105(1−
η)2,f−(0.7) = 1300 and 21000 . a± . 59000. It is
difficult to distinguish the effect of experimental pro-
cedures from the effects of gap width dependence in
the present parameter range.

D. Influence of radial circulation

1. Super-critical case

The influence of radial circulation on the linear sta-
bility onset has been studied numerically by Min and
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Lueptow [8]. They observed that an inward radial
flow and strong outward flow have a stabilizing effect,
while a weak outward flow has a destabilizing effect.
We may use their data to get more precise estimates
for the case α = −3/2, (q = 3/2, Keplerian case). Fig-
ure 7 shows the ratio Rc(α = −3/2)/Rc(α = 0) − 1
as a function of η for Ωo/Ωi = 0. One sees that the
variation is quasi-linear.
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FIG. 7: Rc(α = −3/2)/Rc(α = 0)− 1 as a function of (a)
η for Ω0/Ωi = 0; (b) Ω0/Ωi = 0 for η = 0.85. � : data
from Min and Lueptow. The dotted lines are the fit eq.
(24) and (25).

A best fit gives:

Rc(α = −3/2)

Rc(α = 0)
= 1 + 0.12(1− η),

Ωo

Ωi
= 0. (24)

On the same graph, we show Rc(α = −3/2)/Rec(α =
0)− 1 as a function of Ωo/Ωi for η = 0.85. A best fit
gives:

Re+(α = −3/2)

Re+(α = 0)
= 1 + 1.16

(

Ωo

Ωi

)2

, η = 0.85.

(25)

2. Sub-critical case

The influence of the radial circulation on the non-
linear stability has not been systematically studied.
However, we can get partial answers from the exper-
iments of Wendt [9] and Richard [2], where the in-
fluence of the top and bottom circulation on the on-
set of stability has been studied. Both Richard and
Wendt investigated the stability boundary with dif-
ferent boundary conditions. One boundary condition
was with the bottom attached to the outer cylinder.
In this case, the circulation is mainly in the anti-
clockwise direction, with radial velocities outwards at
the bottom (α > 0). Another boundary condition
was with the bottom attached to the inner cylinder
(at rest). In that case, the circulation is in the op-
posite direction, with inward radial velocities at the
bottom (α < 0). A last boundary condition was in-
termediate between the two, with only part of the
bottom attached to the outer cylinder. In neither
case, noticeable change of the stability boundary has
been noticed, which means that at this aspect ratio
η = 0.7, the radial circulation induced by the bound-
ary conditions has an impact on the subcritical thresh-
old Reynolds number which is less than 10 per cent
(accuracy of the measurements).

E. Influence of aspect ratio

Most of the experimental set-ups described in this
paper have a very large aspect ratio Γ = H/d ≫ 1.
Keplerian disks are characterized by a small aspect
ratio H/d ∼ 0.01 − 0.1. It would be interesting to
conduct systematic studies of the variation of Γ onto
the stability and transport properties. The influence
of Γ onto the instability threshold, in the case of
outer cylinder at rest has been computed by Chan-
drasekhar [28], Snyder [23]. This is illustrated in Fig.
8. The critical Reynolds number is increased, as Γ is
decreased. It follows an approximate law:

Rc(Γ) = Rc

(

1 + Γ−2
)

+O(Γ−2). (26)

This behavior can be understood if one says that as
Γ becomes smaller, the smallest relevant length scale
in the problem become H instead of d. The relevant
Reynolds number has thus to be corrected by a factor
(H/d)2, hence, the Γ−2 law. However, another ex-
perimental study by Park et al. [32] suggests that the

physical relevant length scale is
√
Hd instead of H . A

possible explanation of the difference is through the
Ekman circulation, which is present in experiments
and not in numeric. This circulation may couple verti-
cal and radial velocities, leading to an effective length
scale. The only way to settle this issue is through
smaller aspect ratio systematic laboratory and numer-
ical experiments.
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FIG. 8: Influence of aspect ratio onto the critical Reynolds
number for instability, in the case where the outer cylinder
is at rest. �: numerical data by Chandrasekhar. The
dotted line is a power law fit 0.9Γ−2.

F. Structural stability

To close this section, it is interesting to consider
the influence of additional physical forces that may
be relevant to astrophysical flows. In the sequel, we
only give a summary of the main experimental or the-
oretical results obtained, referring to the publications
for more details.

1. Magnetic field

The influence of a vertical magnetic field on the
stability of a Taylor-Couette flow has been studied
theoretically [28, 33] and experimentally by Donnelly
and Ozima [34] using mercury. Applications to as-
trophysics have been discussed by Balbus and Haw-
ley [35]. This motivated a lot of numerical work on
this instability. For references, see e.g. [36].
In the inviscid limit, the presence of a magnetic

field changes the Rayleigh criteria (14). For exam-
ple, in the case of a magnetic field given by B =√
µ0ρ(0, Hθ(r), Hz), the sufficient condition for sta-

bility is now [38, 39]:

r2∂rΩ
2 − 1

r2
∂r
(

r2H2
φ

)

> 0. (27)

Therefore, anti-cyclonic flow, with RΩ < 0 are now
potentially linearly unstable in the presence of a
magnetic field with no azimuthal and radial compo-
nent [35].
The linear instability in the presence of dissipation

has only been studied numerically. A first observa-
tion was that boundary conditions (e.g. insulating
or conducting walls) are relevant to determining the
asymptotic behaviors [28]. The proposed explanation
is that the magnetic field makes the flow adjoin the

walls for longer distances, so that the viscous dissi-
pation remains comparable to the Joule dissipation
at all fields. A second observation is the importance
of the magnetic Prandtl number Pm = ν/κm (κm is
the magnetic diffusivity) on the instability [36, 37].
On general grounds, it seems that at small Prandtl
numbers, the magnetic field stabilizes the flow in the
supercritical case, while at large Prandtl numbers, the
magnetic field destabilizes the flow. In the subcritical
case, the magnetic field can excite a linear instability
for anti-cyclonic flow, at any Prandtl number. This is
illustrated in Fig. 9.
Scaling of critical Reynolds number with magnetic

Prandtl numbers have been found: in the supercrit-
ical case −1 < RΩ < 0, the critical Reynolds num-

ber scales like P
−1/2
m [37]. In the subcritical case

RΩ = −1, the critical Reynolds number scales like
Pm−1.
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FIG. 9: Influence of body forces on the linear stability
boundary. ⊞: without forces, η = 0.2, numerical data
from Snyder (1968). With vertical constant magnetic field,
at Pm = 1 (�) and Pm = 10−5 (�), η = 0.27; numerical
data from Rüdiger et al, 2003; ∇: with vertical stratifica-
tion, η = 0.2; data from Whithjack and Chen (1974).

2. Vertical stratification

A vertical stable stratification added onto the flow
plays the same role as a vertical magnetic field at low
Pm. In the inviscid limit, its presence changes the
Rayleigh criteria into r2∂rΩ

2 > 0 [40, 41]) . This
means that all anti-cyclonic flows are potentially lin-
early unstable. The role of dissipation on the insta-
bility has been studied numerically [41, 42]) and ex-
perimentally [43, 44]. It was found that stratifica-
tion stabilizes the flow in the GSPC regime, while it
destabilizes it in the GSBC anti-cyclonic regime. The
critical Reynolds number was found to scale with the
Froude number (ratio of rotation frequency to Brunt
Vaissala frequency) like Fr−2, and to scale with the
Prandtl number (ratio of viscosity to heat diffusivity)



10

like Pr−1/2.

3. Radial stratification

A radial temperature gradient applied to the flow
changes the stability. In the inviscid limit, the
Rayleigh criterion is modified by the radial temper-
ature gradient into [45, 46]:

Ω

r
∂r(r

2Ω)

(

1− ∆T

T0

)

− ∂rT

T0
rΩ2 > 0, (28)

where 1/T0 is the coefficient of thermal expansion and
∆T is the temperature difference between the cylin-
ders. The last term in (28) induces an asymmetry be-
tween the case with positive ∆T and negative ∆T . An
experimental study by Snyder and Karlsson [47] helps
to quantifying the role of dissipative processes. It was
found that both positive and negative ∆T have a sta-
bilizing effect when ∆T is small, and a destabilizing
effect when ∆T is large. A more complete exploration
of the parameter space would be welcome, since astro-
physical disks are likely to be subject to this kind of
stratification.

4. Summary

These studies point out an interesting dissymmetry
between the case RΩ > 0 (cyclonic flows) and RΩ < 0
(anti-cyclonic flows). In many instances, the regime of
linear instability is extended by the large scale force
into the whole domain RΩ < 0. As a result, in the
anticyclonic regime one often has to deal with a com-
petition between a linear destabilization mechanism
induced by the large scale effect and the subcritical
transition controlled by the self-sustained mechanism
of the turbulent state.

IV. MEAN FLOW PROFILES

A. Supercritical case

Turbulent mean profiles have been measured re-
cently for different Reynolds number by Lewis and
Swinney [19] in the case with outer cylinder at rest.
They observe that the mean angular momentum L =
rūθ is approximately constant within the core of the
flow: L ∼ 0.5r2iΩi for Reynolds numbers between
1.4× 104 and 6× 105. At low Reynolds number, this
feature can be explained by noting that reducing the
angular momentum is a way to damp the linear in-
stability, and, thus, to saturate turbulence. At larger
Reynolds number, however, one expects the turbu-
lence to be sustained by the shear in the same way

as it is when there is no linear instability at all. Ac-
cordingly, this constancy of the angular momentum
is quite a puzzling fact. Some understanding of this
behavior can be obtained by observing that the mean
profiles obtained by Lewis and Swinney are actually
in good agreement with a profile obtained by Busse
upon maximizing turbulent transport in the limit of
high Reynolds number[48, 49]:

u∞
θ (r) = −η

r̃2S̃

8r
+ r

(

Ω̃ +
2− 3η + 2η2

4(1 + η2)
S̃

)

. (29)

This profile bears some analogy with the laminar pro-
file, which reads:

ulam
θ (r) = −η

r̃2S̃

2r
+ r

(

Ω̃ +
1

2
S̃

)

. (30)

In the Busse solution, the shear profile S∞(r) =

ηr̃2S̃/4r2 = 1/4Slam(r). This ratio is analog to the
value observed at very large Reynolds number in the
non-rotating plane Couette flow [50]. It is therefore
a clear signature of the shear instability, with no dis-
cernable influence of rotation, at least for the limited
value of the rotation number (of the order of −0.28)
considered by Lewis and Swinney. So it is interesting
to test the Busse asymptotic profile using other data,
with different rotation number. This will be the pur-
pose of the next section, where Richard data will be
used.
We may however not conclude this section without

noting an intriguing property of the Busse solution.
Considering RΩ

turb = 2Ω∞(r̃)/S∞(r̃), we get from
(29):

RΩ
turb = 4RΩ + 3

(1− η)2

(1 + η2)
. (31)

So the condition −1 < RΩ
turb < 1/η − 1 (”linear

stability of the turbulent profile”) is satisfied provided
RΩ follows:

− 2− 3η + 2η2

2(1 + η2)
< RΩ <

1− η

4η

(1 + η)2 − 3η(1− η)2

(1 + η2)
,

(32)
that is, in the small gap limit, −1/4 < RΩ < 0. As
we shall see in the sequel, this is precisely the range
of value where the torque is extremum.

B. Subcritical case

For the turbulent flow following the subcritical tran-
sition, we use the data of Richard [2], collected for dif-
ferent Reynolds numbers and rotation numbers. Fig-
ure 10 displays typical turbulent mean profiles in both
the cyclonic and anticyclonic cases, for comparison
with the laminar and the Busse profiles.
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FIG. 10: Mean velocity profiles from Richard at Re/Rg =
1.6: (a): cyclonic case (RΩ = 0.39); (b): anti-cyclonic case
(RΩ = −0.6). Dotted line: laminar profile. Continuous
line: Busse solution eq.(29).

One notices the profile tendency to evolve from the
laminar one to the Busse solution, even if they are still
very far away from the extremizing solution. In order
to evaluate how fast the convergence occurs, figure 11
displays the ratio of the turbulent mean shear to the
laminar shear, both estimated at r̃, i.e. S̄(r̃)/S̃, as a
function of the ratio of the Reynolds number to the
threshold for shear sustained turbulence i.e. Re/Rg.
One may indeed observe a tendency of shear reduction
as the Reynolds number increases, with a more rapid
reduction for rotation number closer to 0. However,
none of the case studied by Richard approaches the
value 0.25 predicted by Busse. It would be interesting
to conduct higher Reynolds number experiments at
large value of the rotation number, to check whether
rotation merely slow down the convergence towards
the 0.25 value, or change it into a number depending
on the rotation number.

Also one may notice that the decrease of S̄(r̃)/S̃
with Re/Rg is much faster for cyclonic flows than for
anticyclonic ones. Figure 12 may provide some hints
on the origin of this dissymmetry. The first one is
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FIG. 11: Ratio of the turbulent mean shear to the lami-
nar shear variation with the Reynolds number (data from
Richard). Cyclonic case: ⊙: RΩ = 0.39; ◦: RΩ ∈
[0.64, 0.52]. Anticyclonic case: •: RΩ ∈ [−2,−1].

obtained by studying the radial variation of the ra-
tio Slam/S̄ at a given Re/Rg, for different rotation
number. This quantity provides the radial variation
of the turbulent viscosity and thus is a good tracer
of transport properties. One may observe an inter-
esting tendency for cyclonic flow to display enhanced
(resp. depleted) transport at the inner (resp. outer)
core boundary, while anti-cyclonic flow rather displays
depleted transport at the center, and enhanced trans-
port at both boundaries.
The second one is provided by the function:

q̄(r) =
2Ω̄(r)

S̄(r)
=

d ln Ω̄

d ln r
, (33)

which may be viewed either as a local mean angular
velocity exponent, or a local mean rotation number.
This local exponent also plotted on figure 12, for dif-
ferent rotation number, at Re/Rg = 1.6. One clearly
observes a tendency towards constancy of this local
exponent in the core of the flow and a bimodal be-
havior: cyclonic flow scatters towards q = 0.5 while
anti-cyclonic flow scatters towards q = −1.5. We
have observed a persistence of this behavior at larger
Reynolds number (up to at least Re/Rg = 20).

V. TORQUE MEASUREMENTS AND

TRANSPORT PROPERTIES

The turbulent transport can be estimated via the
torque T applied by the fluid to the rotating cylinders.
Traditionally, one works with the non-dimensional
torque G = T/ρhν2 [30]. For laminar flows, one can
compute this torque analytically using the laminar
velocity profile. It varies linearly with the Reynolds
number.

Glam =
2π

(1− η)2
ηRe. (34)
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FIG. 12: Mean profile at Re/Rg = 1.6 for (a) turbulent
transport, traced by the ratio Slam/S; (b) local rotation
number. H: RΩ = −1.31; •: RΩ = −1.41; ◦: RΩ = 0.39;
⊙: RΩ = 0.51. Data are from Richard.

When the turbulence sets in, the torque applied to the
cylinders tends to increase with respect to the laminar
case. A good indicator of the turbulent transport can
then be obtained by measuring G/Glam.

A. Super-critical case

As noticed by Richard and Zahn [5], most of the
torque measurements available in the literature con-
cern the case with the outer cylinder at rest (see
e.g. [19, 30] and references therein). In that case, we
note that |RΩ| = |η−1| ≤ 1. An example of the varia-
tion of G/Glam with Reynolds number is given in Fig-
ure 13, in an apparatus with η = 0.724. One observes
three types of behaviors: below a Reynolds number
Rc, i.e. in the laminar regimeG/Glam = 1. Above Rc,
one observes a first regime in which G/Glam varies ap-
proximately like a power-law, with exponent 1/2. In
this regime, Taylor vortices can often be noticed. This
regime continues until Re = RT , where the torque be-
comes stronger, and the power-law steepens into some-

thing with exponent closer to 1. This regime has been
observed up to the highest Reynolds number achieved
in the experiment (of the order of 106).

The experiment with inner cylinder rotating only
covers flows such that RΩ = η − 1. To check whether
this kind of measurement is typical of torque behav-
iors in the globally supercritical case, one must rely on
experiments in which the outer cylinder is also in ro-
tation. Unfortunately, the only torque measurements
available in this case are quite older [9] and not as de-
tailed as in the case with inner cylinder rotating. Most
specifically, they do not extend all the way down to
the transition region between laminar and turbulent.
In several instances in which large Reynolds number
are achieved, however, one may observe a steepen-
ing of the relative torque towards the G/Glam ∼ Re
already observed in the case with inner cylinder ro-
tating. On other measurements performed at lower
Reynolds numbers, the relative torque displays a be-
havior more closely related to the intermediate regime,
with G/Glam ∼ Re1/2. Altogether, this is an indica-
tion that in the globally supercritical case, the torque
follows three regimes:

G ∼ aRe, Re < Rc,

G ∼ βsupRe3/2, Rc < Re < RT ,

G ∼ γsupRe2, Re > RT ,

α =
2πη

(1− η)2
, (35)

where βsup and γsup are constants to be specified later

B. Sub-critical case

The only measurements of torque in the subcritical
case were performed by Wendt [9] and Taylor [16] in
experiments with the resting inner cylinder, and rotat-
ing outer cylinder. Wendt’s experiments cover three
different values of η, Taylor’s cover eleven values of
η. Taylor measurements cover sufficiently small value
of Reynolds number so that one can see that above
a critical Reynolds number Re = Rg, the torque bi-
furcates from the laminar value towards a regime in
which the relative torqueG/Glam behaves like Re. An
example is given in figure 13. Measurements by Wendt
at larger Reynolds number display no evidence for an
additional bifurcation. So, in the subcritical case, the
torque presumably follows only two regimes:

G ∼ aRe, Re < Rg,

G ∼ γsubRe2, Re > Rg, (36)

where γsub is a constant that we specify in the next
subsection.
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FIG. 13: Relative torque G/Glam as a function of the
Reynolds number. H: super-critical case with outer cylin-
der at rest; RΩ = −0.276; η = 0.724. Data are from Lewis
and Swinney. �: sub-critical case, with inner cylinder at
rest. RΩ = 0.47; η = 0.68. Data are from Wendt.

C. Connecting torque and thresholds

Invoicing the continuity of the torque as a function
of the Reynolds number at the transitions allows to
determine the prefactors βsup, γsup and γsub. In the
supercritical case, one obtains:

βsup = αR−1/2
c ,

γsup = βsupR
−1/2
T =

a√
RcRT

, (37)

and in the subcritical case:

γsub =
a

Rg
. (38)

where α is known through (34). This enables the
knowledge of the torque as a function of Rc and RT , or
Rg which then encode all the dependencies on RΩ and
η. This would be of great practical interest, and a pos-
teriori gives all its importance to the work conducted
in section III, since torque measurements are usually
more difficult to perform than thresholds estimations,
especially when both cylinders are rotating. Our ar-
gument is admittedly very crude, so it is important to
test its validity on available data. Figure 14 shows the
comparison between the real non-dimensional torque
measured in experiments, and the torque computed
using only the critical Reynolds number. At low
Reynolds number, there is a fairly large discrepancy
but at large Reynolds, the approximate formula pro-
vides a good estimate.
Comparing (37) and (38) suggest to introduce

Rg
sup =

√
RcRT . This new threshold, defined in the

supercritical case, would correspond to the Reynolds
number above which turbulence is sustained by the
shear mechanism, and not anymore by the linear in-
stability mechanisms. A physical basis for this ex-
pression could be given using the observation that the
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FIG. 14: Relative torque G/Glam as a function of the
Reynolds number, compared with its determination using
critical Reynolds numbers. H: globally super-critical case
with outer cylinder at rest. RΩ = −0.276; η = 0.724.
(Lewis and Swinney). �: globally sub-critical case, with
inner cylinder at rest. RΩ = 0.47; η = 0.68 (Wendt

1933). Short dashed line:
√

Re/Rc with Rc = 90; dot-

dashed line: Re/
√
RcRT with

√
RcRT = 957; long-dashed

line: Re/Rg where Rg = 32688. The critical Reynolds
numbers have been computed using results of section III.

transition occurs in a turbulent state, where transport
properties are augmented with respect to a quiescent,
laminar case, in which all transport is ensured by vis-
cous processes. This results in a delayed transition
to the ultimate state, since the viscosity is artificially
higher by an amount νt/ν, where νt is the turbulent
viscosity. Using νt/ν = G/Glam, we thus get from
(35) and (37) an estimate of the relevant threshold as:

Rsup
g = RT

ν

νt
= RT

a

βsup
√
RT

=
√

RcRT . (39)

At this stage of the analysis, R−
g , R

sup
g and R+

g respec-
tively define a function of RΩ and η on the intervals
RΩ < Rc

Ω
−, Rc

Ω
− < RΩ < Rc

Ω
+ and Rc

Ω
+ < RΩ,

where we recall here that Rc
Ω
− = −1 and Rc

Ω
+ =

1/η − 1. Further indication of the relevance of Rsup
g

is provided by the continuity of this function with RΩ

throughout the super/sub-critical boundaries. This is
illustrated on figure 15, where the continuity is ob-
tained on the cyclonic side between the Tillmark’s
data (η = 1) and Wendt’s data (η = 0.935) and on
the anticyclonic side between Richard’s data (η = 0.7)
and Wendt’s data (η = 0.68).

D. How to use torque with resting outer

cylinder

Torque measurements described in previous section
suggests that at large enough Reynolds number, an
”ultimate” regime is reached with quadratic variation
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FIG. 15: Rg as a function of RΩ and η. Anticyclonic side:
•: Richard data (η = 0.7); �: Wendt data (η = 0.68).
Cyclonic side: ♦: Tilmark data (η = 1) and fit as in section
III; �: Wendt data (η = 0.935); ◦: Richard data (η = 0.7).
The lines are guides for the eyes to underline the continuity
across the supercritical to subcritical domains for similar
values of η.

with Reynolds number. This suggests that in this

regime, the interesting parameter is the ratio of the
torque in any configuration, to the torque measured
in a special case. Because the case with resting outer
cylinder is the most studied, it is of practical interest
to choose this case as the reference, so that the rele-
vant ratio is G/Gi, where Gi is the torque when only
the inner cylinder is rotating. Given the above sub-
sections, G/Gi is only a function of RΩ and η given
by h(RΩ, η) = Rg(RΩ(Ro = 0), η)/Rg(RΩ, η), where
Rg is the generalized threshold defined in the previous
section and displayed on figure 15. Figure 16 indeed
shows the ratio G/Gi, for different values of η, as a
function of the rotation number. The measurements
for −0.8 < RΩ < 0.5 are direct measurements from
the Taylor and Wendt experiments. The measure-
ments for RΩ < −1 and RΩ > 0.5 are indirect mea-
surements, coming from the experiment by Richard,
in which only critical numbers from stability were de-
duced. In that case, the torques have been computed
using the results of previous section. All these results
show that the non-dimensional torque behaves as:

G(Re,RΩ, η) = Gi(Re, η)h(RΩ, η), (40)

where Gi is the torque when only the inner cylinder
is rotating, and h(RΩ, η) is the function of figure 16.
This universal function is very interesting because

it provides good insight about the influence of the
rotation and curvature on the torque. For rotation
number −0.2 < RΩ < 0, the torques are maximal
and equal to the torque measured when only the in-
ner cylinder is rotating. For rotation numbers out-
side this range, torques tend to decrease, with a sharp
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FIG. 16: Relative torque G/Gi as a function of RΩ and
η. •, (resp. ◦): estimation from Richard data (η = 0.7),
based on critical Reynolds numbers, computed using re-
sults of Section III in the anticyclonic (resp. cyclonic
case); �, (resp. �): Wendt data (η = 0.68, 0.85, 0.935),
the square size increasing with η in the anticyclonic (resp.
cyclonic case).

transition towards a constant of the order of 0.1 on
the side RΩ > 0. On the other side, the transi-
tion is softer, with an approximate quadratic inverse
variation until the smallest available rotation number
RΩ = −1.5. From a theoretical point of view, the
asymmetry could be linked with the different stability
properties of the flow on either side of the curve: for
−1 < RΩ < 1/η−1, the flow is linearly unstable, while
it becomes liable to finite amplitude instabilities out-
side this range. The variation we observe can also be
linked with experimental studies by Jacquin et al [51],
re-analyzed by Dubrulle and Valdettaro [52]. They
show that rotation tends to inhibit energy dissipation
and observed simple power laws linking the energy dis-
sipation with and without rotation as ǫΩ6=0 = ǫΩ=0R

γ
Ω,

where RΩ is a rotation number based on local shear
and rotation.
Finally, the previous discussion shows that the

knowledge of the torque in the case with resting outer
cylinder as a function of Re and η is an essential data
to compute the torque in any other configuration. A
theoretical model of the torque in that configuration
has been proposed by Dubrulle and Hersant [12], in
the case where the boundary conditions at the cylin-
der are smooth. It gives:

Gi =
(3 + η)1/4(ηRe)3/2

(1− η)7/4(1 + η)1/2
, Rc ≤ Re ≤ RT

Gi = 0.33
(3 + η)1/2

(1 − η)3/2(1 + η)

(ηRe)2

(ln[(K(η)(ηRe)2])
3/2

,

Re > RT ,

K(η) = 0.0001
(1− η)(3 + η)

(1 + η)2
, (41)
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The quality of the fit can be checked on Fig. 17. For
Re < Rc, the flow is laminar and the transport is
ensured only by the ordinary viscosity.
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FIG. 17: Influence of boundary conditions on torque. Case
with two rough boundaries at η = 0.724, △, data from Van
den Berg et al.; at η = 0.625, ⊞, data from Cadot et al..
The continuous lines are the formula (43). Case with two
smooth boundaries at η = 0.724, ▽. Data from Lewis
and Swinney. The dotted and the dashed-dot lines are the
formulae (41).

E. Towards extended Reynolds similarity

The link between torque and critical Reynolds num-
ber has a powerful potential for generalization of the
torque measurements performed in the laboratory for
astrophysical or geophysical flows. Indeed, all the ad-
ditional complications studied so far (aspect ratio, cir-
culation, magnetic field, stratification, wide gap limit)
have been found to shift the critical Reynolds number
for linear stability by a factor function of this effect,
like Rc(effect 6= 0) = Rc(effect = 0)F . Depend-
ing on the situation, F can be interpreted as either
a change in the effective viscosity (magnetic field),
or a change in the effective length scale (aspect ra-
tio, wide gap). If, on the other hand, the scaling of
the torque with Reynolds number (i.e. the shear) re-
mains non-affected by such a process, the computation
done in section VD are easy to generalized through
an effective Reynolds number Reeff = Re/F . Specif-
ically, everything that has been said for the torque,
in the ideal Taylor-Couette experiment, will still be
valid with additional complication provided one re-
places the Reynolds number by an effective Reynolds
number, taking into account the stability modification
induced by this effect. This principle is by no mean
trivial and must be used with caution, even though it
may appear as nothing more that an extension of the
Reynolds similarity principle. In fact, it has been val-
idated so far only in the case with vertical magnetic

field, where it has been indeed checked by Donnelly
and Ozima [34] that the torque scaling is unchanged
by the magnetic field. In the sequel, we shall use this
procedure in disks, because we noticed that it gave
the most sensible results. It would however be impor-
tant to check experimentally this ”extended Reynolds
similarity” principle.

1. Influence of boundary conditions

Experimental investigation of the Taylor-Couette
flow with different set-up has shown that boundary
conditions have an influence on the torque. More pre-
cisely, it has been shown that the inclusion of one [53]
or two [54] rough boundary condition, in configura-
tion with outer cylinder at rest, increases the torque
with respect to the case with two smooth boundary
conditions, at large Reynolds numbers. In convec-
tive flows, a similar increase of transport properties
is observed when changing from no-slip to stress-free
boundary conditions [55]. In both cases, the increase
occurs so as to increase the agreement between the
observed value, and a value based on classical Kol-
mogorov theory. A theoretical study of Dubrulle [56]
explains this feature through the existence or absence
of logarithmic corrections (see formula 41-b)) to scal-
ing generated by molecular viscosity and large-scale
velocity gradient in the vicinity of the boundary. Ob-
viously, in the presence of a rough boundary, or under
stress-free boundary conditions, mean large-scale ve-
locity gradients are erased near the boundary, and no
logarithmic correction develops.
For two rough boundary conditions, Cadot et al [54]

measure Gi ∼ 0.22− 0.3Re2 for η = 0.625, while van
den Berg et al. [53]observe Gi ∼ 0.43Re2 for η = 0.73.
The analogy with thermal convection [12] suggest that
Gi depends on its laminar value and on η and Re like

Gi

Glam
= γrough

√

(3 + η)(1 − η)

(1 + η)
ηRe. (42)

Using (34), and the experimental law, we find
γrough = 0.017, so that:

Gi = 0.107

√

(3 + η)

(1 + η)(1 − η)3/2
(ηRe)2. (43)

The comparison between this formula and the exper-
iments is made in figure 17. For reference, we also
added the torque in the case of two smooth boundary
conditions, as given by (41-b).
We do not have any theory for the case with asym-

metric boundary conditions (one rough, one smooth).
Laboratory experiments show that the torque lies in
between the curve for two smooth boundary condi-
tions and the curve for two rough boundary condi-
tions. The exact location however depends on local
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conditions in a non-trivial way (for example it is dif-
ferent when the rough conditions applies to the (rotat-
ing) inner cylinder or to the (resting) outer cylinder).
The present experimental evidence therefore only al-
lows the torque measurements with two smooth (resp.
two rough) boundary conditions to be considered as
lower (resp. upper) bounds for the torque, in case of
complicated boundary conditions.

2. Influence of radial circulation

Torque measurements by Went, for different ge-
ometry show that the circulation can have an in-
fluence on the transport properties. Specifically, it
has been observed that an outward circulation tends
to increase the torque applied on the inner cylinder,
while an inward circulation tends to decrease this
torque. The difference can be quite important. At
large Reynolds numbers, the relative increase of the
torque G(α < 0)/G(α > 0) can be computed as a
function of η. This is shown in Fig. 18. One observes
a quasi-linear variation:

G(α < 0)

G(α > 0)
= 12.45(1− η), Ωi = 0. (44)

The case with intermediate boundary conditions (pre-
sumably α close to zero) lays about half way in be-
tween the two cases so that:

G(α < 0)

G(α = 0)
= 4.75(1− η), Ωi = 0. (45)

Close to the transition threshold, there is also an
asymmetry between the two circulation regimes: out-
ward circulation enhances the torque with respect to
the laminar regime, while inward circulation decreases
this torque! This puzzling aspect has been explained
by Coles and Van Atta [10]; in absence of circulation,
in stationary state, the torque exerted at the inner
and outer cylinder must balance. In the presence of
circulation, the transport of fluid toward or away from
the plane of symmetry induces an imbalance of the two
torques, which ceases to be equal. Coles and Van Atta
measured this imbalance as a function of the Reynolds
number for the case with inner cylinder at rest, at
η = 0.89, and with boundary conditions favoring an
outward circulation. One observes an imbalance of
the order of 30 to 50 percent on Fig. (18), with the
torque on the inner cylinder being larger. These obser-
vations suggest the following model: in the presence
of a radial circulation, the inner and outer torques are
modified into:

Go(α) = G(α = 0) (1− α∆(Re, η)) ,

Gi(α) = G(α = 0) (−1− α∆(Re, η)) , (46)

where ∆ is a positive function of η and Re. So, when
reversing the circulation (going from α > 0 to α <
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FIG. 18: Influence of radial circulation on torque. (a)
G(α > 0)/G(α < 0) as a function of η for Ω0/Ωi = 0 in
the experiment of Wendt, at large Reynolds numbers. The
squares are the data. The line is the fit eq. (44) (b) Ratio
of torque applied to outer cylinder vs. torque applied to
the inner cylinder in the case of an outward circulation,
η = 0.89.

0, the torque exerted at the inner cylinder decreases
(in absolute value), like in Wendt data. Moreover,
these data indicate that at large Reynolds number,
the function ∆ becomes independent of Re. Note also
that according to this model, we should have Gi(α <
0)/Gi(α > 0) = −Go(α > 0)/Gi(α > 0. At Re =
105, η = 0.8, the data of Wendt provide a value of
0.25 for this ratio, in good agreement with the value
observed by Coles and Van Atta, see Fig. 18. In
this model, the total torque is zero (conservation of
total angular momentum) only when considering the
torque applied by the circulation on the top and the
bottom boundary. This means that in the presence of
a radial circulation, a non-negligible torque is likely
to apply at the vertical boundary. This observation
may be relevant to astrophysical disks, and jet-like
phenomena.
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3. Influence of a vertical magnetic field

The influence of a constant vertical magnetic field
on the torque has been studied by Donnelly and Oz-
ima [34]. The measurements have been performed
in the linear instability regime, with outer cylinder
at rest. It is observed that an increasing magnetic
field reduces the torque, so as to conserve the Re3/2

scaling observed at zero magnetic field (section VA).
The torque reduction is thus a function only of a non-
dimensional magnetic field, and of η. Examples are
provided in Fig. 19, for gap sizes 0.901 and 0.995 and
Reynolds number Re ∼ 2100.
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FIG. 19: Influence of vertical magnetic field on torque
in the case with inner cylinder rotating. Ratio of torque
with magnetic field to the torque without magnetic field
in same experimental conditions, as a function of Q, the
non-dimensional magnetic number. The symbols are the
data. The lines are the fit (47). Data are form Donnelly
and Ozima. ⊞: η = 0.901, Re = 2105; the constant for the
fit are b = 0.803 and c = 0.001; ⊙: η = 0.995, Re = 2050;
the constants used for the fit are b = 0.920 and c = 0.002.

The torque reduction can be quantified by the dimen-
sionless number Q = µ2H2σd2/ρν, where µ is the
permeability, σ is the electrical conductivity and H is
the magnetic field in tesla. It seems to follow a simple
law:

Gi

Gi(Q = 0)
=

b(η)
√

1 + c(η)Q
, (47)

where b(η) and c(η) are functions of the gap size.
Physically, this torque reduction may be due to the
elongation of the cellular vortices which occurs as
the magnetic field is increased [34]. Mathematically,
the reduction can be understood using the connection
between torque and critical number. In this frame-
work, Chandrasekhar [28] observes that the addition
of a magnetic field onto a flow heated from below
imparts to the liquid an effective kinematic viscosity

νeff ∝ (Hzd)
2/κm. Only the component of the field

parallel to the gravity vector is effective. This makes
the critical Reynolds number for stability proportional
to 1 + Q/Q0. Using the relation between the torque
and the critical Reynolds number in the linearly un-
stable regime (eqs. (35) and (37)), this leads to the
scaling (47).

F. Turbulent viscosity

The turbulent viscosity in the direction perpendic-
ular to the shear νt can be estimated via the mean
torque T̄ applied by the fluid to the rotating cylinders
and the mean turbulent velocity profile. Indeed, this
torque induces a stress equal to:

T̄

rA
=

ρν2

2πr2
Ḡ = ρνtr∂r

ūθ

r
, (48)

where A is the area of a cylindrical fluid element at
radius r, ρ is the fluid density, and ūθ is the mean
azimuthal viscosity. Since a similar formula applies in
the laminar case, with νt = ν, one simply gets:

νt
ν

=
Slam

S̄

Ḡ

Glam
. (49)

Using the expression of Re, RC and Glam (34), we
thus get the simple expression:

νt =
1

2π
RC

4Gi(Re, η)

Re2
h(RΩ, η)

Slam

S̄
S̃r̃2 = βS̃r̃2

(50)
Here, we have adopted the notation of Richard and
Zahn [5] to express the turbulent viscosity in unit of
the typical shear and radius of the flow as β. This non-
dimensional parameter encompasses all the interesting
variation of the turbulent viscosity as a function of the
radial position r and the control parameters Re, RC

(or η) and RΩ. The radial variation is given through
the ratio Slam/S̄ as illustrated in section IVB. This
ratio is one near the boundary and may increase in
the core of the flow, due to the turbulent shear re-
duction. All the variation with RΩ is through the
function h which has been empirically determined in
Section VD and plotted in Fig. 16. All the variation
with Re is through Gi(Re, η)/Re2, which can be de-
termined through torque measurements (Sections VA
and VB), with a theoretical expression provided in
Section VD for smooth boundaries, and VE for rough
boundaries. The dependence on the curvature is sub-
tler since it appears in all the above dependencies.
An example of variation of the dimensionless turbu-

lent viscosity β for η = 0.72 is provided in Fig. 20 for
smooth and rough boundary conditions. One sees that
at large enough Reynolds number, this function be-
comes independent of the Reynolds number for rough
boundary conditions, while it decreases steadily in the
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smooth boundary cases, due to logarithmic correc-
tions. This weak Reynolds number variation is in con-
trast with standard turbulent viscosity prescription,
based on dimensional consideration à la Kolmogorov.
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FIG. 20: Influence of Reynolds number on turbulent vis-
cosity. Case with two rough boundaries at η = 0.724, ∇,
data from Van den Berg et al.. The continuous line is
drawn using formula (43). Case with two smooth bound-
aries at η = 0.724, △, data from Lewis and Swinney. The
dotted and the dashed-dot lines are drawn using formulae
(41).

Finally, let us compare our results with previ-
ous results for the turbulent viscosity in rotating
flows. Using a turbulent closure model of turbulence,
Dubrulle [57] derived νt = 2× 10−3R−2

Ω S̃r̄2. This for-
mula reflects the correct behavior in term of RΩ (see
Section VC) but fails to reproduce the Reynolds de-
pendence in the case of smooth boundary conditions.
For rough boundary conditions, our formula predicts a
turbulent viscosity going like νt = 8×10−3R−2

Ω S̃r̃2 for

RΩ < −0.5 and νt = 2× 10−3R−2
Ω S̃r̃2 for RΩ > 0.5×

10−4, in the wide gap limit. The formula of Dubrulle
is therefore in between these two predictions. Richard
and Zahn [5] used Taylor measurements [16] to derive
the value β = 1.5 ± 0.5× 10−5. These measurements
are performed for Re ∼ 5×104, with inner cylinder at
rest. At η = 0.7, one has RΩ = 0.4 and from Fig. 16,
h(0.4, 0.7) = 0.05. For Slam/S̄ we adopt a value equal
to 2, as suggested by Section IVB. Finally, from Fig.
20, we get R4

CGi(Re, 0.7)/Re2 = 5 × 10−4 so that we
finally obtain β = 8 × 10−6, an estimate close to the
one proposed by Richard and Zahn.

VI. CONCLUSION AND HINTS FOR

FUTURE WORK

The present work provides us with a prescription for
the turbulent viscosity hence the turbulent transport

for the Taylor-Couette flow. This prediction clearly
indicates the dependencies on the Reynolds number
and the rotation number. The curvature effect is much
trickier to isolate at least with the available data, since
it appears in all the terms of the prescription. Espe-
cially, on the cyclonic side, where the Rayleigh crite-
rion depends on the curvature, it is impossible without
any phenomenological arguments to isolate the cur-
vature effect from the rotation one within the set of
data used here. Since we wanted to remain as close as
possible to the existing data, we decided not to repro-
duce any phenomenological arguments in the present
paper (for such an analysis see e.g. Longaretti and
Dauchot [11]).
The introduction of new control parameters, which

rely on the dynamical properties of the flow, rather
than on its geometry allows us to envision some ap-
plication of our result to rotating shear flows in general
even if one should remain cautious with the details of
the boundary conditions. These new control param-
eters have a rather general ground, but they remain
global quantities. It would be interesting to further
develop this approach, by introducing local dynami-
cal control parameters, so that in spatially developing
flows, one could conduct a local study of the stability
properties.
In order to validate the above prescription, it would

definitely be necessary to confront it to more exper-
imental data. On the anticyclonic side, in the sub-
critical regime, only one value of the curvature has
been investigated, so that we have very little idea of
its influence. In the supercritical regime, an impor-
tant hypothesis made here was to introduce Rsup

g and
to relate it to RT and Rc. Also, we have proposed
to relate the torque measurements (a difficult exper-
imental task) to the threshold determination. These
conjectures should be checked against more data. Fi-
nally, we have tried to provide some indications on
the influence of external effects such as stratification,
or magnetic fields. Clearly the lack of experimental
data here is such that very little could be done and a
definitive effort should be conducted in this direction.
Still, it is to our knowledge the first time that using

most of the existing experimental studies a practical
prescription for the turbulent viscosity is proposed. It
can certainly be improved, but we believe that, even
at the present level, it can already bring much insight
into the understanding of some astrophysical and geo-
physical flows.
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in circumstellar disks”, A& A accepted (2004).

[2] D. Richard. Instabilités hydrodynamiques dans les
écoulements en rotation différentielle. PhD thesis.
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TABLE II: Notations

Superscript and subscript conventions
X any flow variable (e.g., component of velocity)
Xlam laminar part of X
X̄ mean part of X
X ′ fluctuating part of X
X̃ typical value of X
X∞ relates to inviscid flows
XpCf relates to Plane Couette flows
XTCf relates to Taylor-Couette flows
Xsub relates to subcritical flows
Xsup relates to supercritical flows
X+ relates to cyclonic flows
X− relates to anti-cyclonic flows
X = (Xx, Xy , Xz) inertial frame cartesian components of X
X = (Xr, Xθ , Xz) inertial frame cylindricala components of X
X = (Xr, Xφ, Xz) rotating frame cylindricala components of X

Hydrodynamical quantities
x position vector
u inertial frame velocity vector
w rotating frame velocity vector
p, π fluid pressure, generalized pressure
Ω = uθ/r angular velocity
Ωrf angular velocity of the rotating frame
S velocity shear
Slam; S̄ dulam

x /dy; dūx/dy (plane Couette flow)
Slam; S̄ rdΩlam/dr; rdΩ̄/dr (Taylor-Couette flow)
L = (x× u)z = r2Ω specific angular momentum
T torque
G = T/(ρhν2) adimensionalized torque

Geometric and physical quantities
General

ν kinematic viscosity
νt turbulent viscosity
ρ mass density

Couette flow
±V bounding plate velocity
d gap between bounding plates

Taylor-Couette flow
ri,o Inner, outer cylinder radii
Ωi,o Inner, outer cylinder angular velocity
d = ro − ri gap

η = ri/ro radius ratio (dimensionless measure of the gap)
h cylinders height

Dimensionless quantities
Standard adimensionalization

[L] = d unit of length
[T ] = d2/ν unit of time
R± = ±V d/ν Reynolds number of moving plates (plane Couette flow)
Re = R+ −R− Reynolds number (plane Couette flow)
Ri,o = ri,oΩi,o/ν Reynolds number of rotating cylinders (Taylor-Couette
Re = |Ro −Ri| Reynolds number (Taylor-Couette flow)

Dynamical adimensionalization
(Taylor-Couette flow)

[L] = d unit of length
[T ] = S̃−1 unit of time
Re = S̃d2/ν Reynolds number
RΩ = 2Ωrf/S̃ rotation number
R∞

Ω rotation number at marginal stability (Re = ∞)
RC = d/r̃ curvature number

Local dynamical ratios
(Taylor-Couette flow)

Γν = advection−shear

viscous dissipation
Local “Reynolds” ratio

ΓΩ = Coriolis

advection−shear
Local “rotation” ratio

ΓC = curvature

advection−shear
Local “curvature” ratio

Transition Reynolds numbers
Rc first supercritical linear transition
Rg minimal Reynolds number for self-sustained turbulence
RT Transition to “hard” turbulence (as traced by torques)

Symbol conventions in graphs
�,♦, ◦,△ cyclonic data
�,�, •,N anti-cyclonic data
�,� Wendt (1933) data
△,N Taylor (1936) data

Continued on next page

♦,� Tillmark and Alfredsson (1996) data
◦, • Richard (2001) data
▽,H Lewis and Swinney (1999) data
a The correspondance between cartesian and cylindrical axes is (x ↔ −θ,−φ), and


