277 research outputs found
Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity
Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective.
Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode
of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric
analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats.
Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats
(Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed
tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear
variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are
consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a
separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae,
we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The
evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the
separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats.
Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage,
morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions
peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable
morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in
reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional
diversity studies, and may reveal novel patterns of morphospace occupation
Stable isotope analysis of carnivores from the Turkana Basin, Kenya: evidence for temporally-mixed fossil assemblages
Stable isotope palaeoecology of fossil mammals is a key research tool for understanding the environmental context of hominin evolution in the Plio-Pleistocene of Africa. Well studied mammal groups include bovids, suids, equids, proboscideans and primates, but to date there has been no in-depth study of modern and fossil carnivores. Here we produce an Africa-wide oxygen and carbon enamel isotope dataset for modern carnivores and compare it with fossil carnivore data sampled from the Plio-Pleistocene Omo Group of the Turkana Basin, Kenya. Comparison of modern carnivore carbon isotopes with satellite images of land cover indicates that carnivore δ13C is related to the proportion of woody cover in the local environment. Modern carnivore oxygen isotopes are strongly influenced by the δ18O of meteoric water, through drinking from standing water and through prey body fluids. Carbon isotope data from fossil carnivores shows close agreement with palaeovegetation reconstructions from δ13C of palaeosol carbonates from the same geological Members, and a similar long-term trend in δ13C values through time (4 Ma to 1 Ma), reflecting a gradual increase in the proportion of C4 grasses in the Turkana Basin. This increase in the δ13C of large carnivores is consistent with the evidence from other mammalian groups for an increase in the proportion of grazers compared to browsers and mixed feeders during this time interval. Two distinct trends within oxygen versus carbon isotope space indicates that the fossil carnivores lived during two distinct climatic regimes – one in which palaeo-lake Turkana was freshwater, and one in which the lake resembled its modern-day hyperalkaline state. These two climatic states most likely represent the end-members of precessionally-driven rainfall extremes over the Ethiopian Highlands. This indicates that each studied faunal assemblage from the Omo Group is a time- and climate-averaged palimpsest; this has significant implications for the interpretation of environmental signals and community palaeoecology derived from Turkana Basin fossil mammals, including early hominins
Oldest known pantherine skull and evolution of the tiger
The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species
Statistical support for the hypothesis of developmental constraint in marsupial skull evolution.
Background: In contrast to placental neonates, in which all cranial bones are ossified, marsupial young have only the bones of the oral region and the exoccipital ossified at birth, in order to facilitate suckling at an early stage of development. In this study, we investigated whether this heterochronic shift in the timing of cranial ossification constrains cranial disparity in marsupials relative to placentals.
Methods: We collected three-dimensional (3D) landmark data about the crania of a wide range of extant placentals and marsupials, and from six fossil metatherians (the clade including extant marsupials and their stem relatives), using a laser scanner and a 3D digitizer. Principal components analysis and delta variance tests were used to investigate the distribution and disparity of cranial morphology between different landmark sets (optimizing either number of landmarks or number of taxa) of the whole skull and of individual developmental or functional regions (neurocranium, viscerocranium, oral region) for extant placentals and marsupials. Marsupial and placental data was also compared based on shared ecological aspects including diet, habitat, and time of peak activity.
Results: We found that the extant marsupial taxa investigated here occupy a much smaller area of morphospace than the placental taxa, with a significantly (P<0.01) smaller overall variance. Inclusion of fossil taxa did not significantly increase the variance of metatherian cranial shape. Fossil forms generally plotted close to or within the realm of their extant marsupial relatives. When the disparities of cranial regions were investigated separately, significant differences between placentals and marsupials were seen for the viscerocranial and oral regions, but not for the neurocranial region.
Conclusion: These results support the hypothesis of developmental constraint limiting the evolution of the marsupial skull, and further suggest that the marsupial viscerocranium as a whole, rather than just the early-ossifying oral region, is developmentally constrained
Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae
Among adults of closely related species, a trend in craniofacial evolutionary allometry (CREA) for larger taxa to be long-faced and smaller ones to have paedomorphic aspects, such as proportionally smaller snouts and larger braincases, has been demonstrated in some mammals and two bird lineages. Nevertheless, whether this may represent a ‘rule’ with few exceptions is still an open question. In this context, Felidae is a particularly interesting family to study because, although its members are short-faced, previous research did suggest relative facial elongation in larger living representatives. Using geometric morphometrics, based on two sets of anatomical landmarks, and traditional morphometrics, for comparing relative lengths of the palate and basicranium, we performed a series of standard and comparative allometric regressions in the Felidae and its two subfamilies. All analyses consistently supported the CREA pattern, with only one minor exception in the geometric morphometric analysis of Pantherinae: the genus Neofelis. With its unusually long canines, Neofelis species seem to have a relatively narrow cranium and long face, despite being smaller than other big cats. In spite of this, overall, our findings strengthen the possibility that the CREA pattern might indeed be a ‘rule’ among mammals, raising questions on the processes behind it and suggesting future directions for its study
Mio-Pliocene Faunal Exchanges and African Biogeography: The Record of Fossil Bovids
The development of the Ethiopian biogeographic realm since the late Miocene is here explored with the presentation and review of fossil evidence from eastern Africa. Prostrepsiceros cf. vinayaki and an unknown species of possible caprin affinity are described from the hominid-bearing Asa Koma and Kuseralee Members (∼5.7 and ∼5.2 Ma) of the Middle Awash, Ethiopia. The Middle Awash Prostrepsiceros cf. vinayaki constitutes the first record of this taxon from Africa, previously known from the Siwaliks and Arabia. The possible caprin joins a number of isolated records of caprin or caprin-like taxa recorded, but poorly understood, from the late Neogene of Africa. The identification of these two taxa from the Middle Awash prompts an overdue review of fossil bovids from the sub-Saharan African record that demonstrate Eurasian affinities, including the reduncin Kobus porrecticornis, and species of Tragoportax. The fossil bovid record provides evidence for greater biological continuity between Africa and Eurasia in the late Miocene and earliest Pliocene than is found later in time. In contrast, the early Pliocene (after 5 Ma) saw the loss of any significant proportions of Eurasian-related taxa, and the continental dominance of African-endemic taxa and lineages, a pattern that continues today
Taphonomic Criteria for Identifying Iberian Lynx Dens in Quaternary Deposits
For decades, taphonomists have dedicated their efforts to assessing the nature of the massive leporid accumulations recovered at archaeological sites in the northwestern Mediterranean region. Their interest lying in the fact that the European rabbit constituted a critical part of human subsistence during the late Pleistocene and early Holocene. However, rabbits are also a key prey in the food webs of Mediterranean ecosystems and the base of the diet for several specialist predators, including the Iberian lynx (Lynx pardinus). For this reason, the origin of rabbit accumulations in northwestern Mediterranean sites has proved a veritable conundrum. Here, we present the zooarchaeological and taphonomic study of more than 3000 faunal and 140 coprolite remains recovered in layer IIIa of Cova del Gegant (Catalonia, Spain). Our analysis indicates that this layer served primarily as a den for the Iberian lynx. The lynxes modified and accumulated rabbit remains and also died at the site creating an accumulation dominated by the two taxa. However, other agents and processes, including human, intervened in the final configuration of the assemblage. Our study contributes to characterizing the Iberian lynx fossil accumulation differentiating between the faunal assemblages accumulated by lynxes and hominins
CNS-targeted glucocorticoid reduces pathology in mouse model of amyotrophic lateral sclerosis
Hallmarks of CNS inflammation, including microglial and astrocyte activation, are prominent features in post-mortem tissue from amyotrophic lateral sclerosis (ALS) patients and in mice overexpressing mutant superoxide dismutase-1 (SOD1 G93A ). Administration of non-targeted glucocorticoids does not significantly alter disease progression, but this may reflect poor CNS delivery. Here, we sought to discover whether CNS-targeted, liposomal encapsulated glucocorticoid would inhibit the CNS inflammatory response and reduce motor neuron loss. SOD1 G93A mice were treated with saline, free methylprednisolone (MP, 10 mg/kg/week) or glutathione PEGylated liposomal MP (2B3-201, 10 mg/kg/week) and compared to saline treated wild-type animals. Animals were treated weekly with intravenous injections for 9 weeks from 60 days of age. Weights and motor performance were monitored during this period. At the end of the experimental period (116 days) mice were imaged using T 2-weighted MRI for brainstem pathology; brain and spinal cord tissue were then collected for histological analysis
AA-Amyloidosis Can Be Transferred by Peripheral Blood Monocytes
Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein. Initial amyloid deposits appear in the perifollicular region of the spleen, followed by deposits in the liver. We used the established murine model and induced AA-amyloidosis in NMRI mice by intravenous injections of purified amyloid fibrils (‘amyloid enhancing factor’) combined with inflammatory challenge (silver nitrate subcutaneously). Blood plasma and peripheral blood monocytes were isolated, sonicated and re-injected into new recipients followed by an inflammatory challenge during a three week period. When the animals were sacrificed presence of amyloid was analyzed in spleen sections after Congo red staining. Our result shows that some of the peripheral blood monocytes, isolated from animals with detectable amyloid, contained amyloid-seed that primed for AA-amyloid. The seeding material seems to have been phagocytosed by the cells since the AA-precursor (SAA1) was found not be expressed by the monocytes. Plasma recovered from mice with AA amyloidosis lacked seeding capacity. Amyloid enhancing activity can reside in monocytes recovered from mice with AA-amyloidosis and in a prion-like way trigger amyloid formation in conjunction with an inflammatory disorder. Human AA-amyloidosis resembles the murine form and every individual is expected to be exposed to conditions that initiate production of the acute-phase reactant. The monocyte-transfer mechanism should be eligible for the human disease and we point out blood transfusion as a putative route for transfer of amyloidosis
- …