255 research outputs found
Series Resistance Analysis of Passivated Emitter Rear Contact Cells Patterned Using Inkjet Printing
For higher-efficiency solar cell structures, such as the Passivated Emitter Rear Contact (PERC) cells, to be fabricated in a manufacturing environment, potentially low-cost techniques such as inkjet printing and metal plating are desirable. A common problem that is experienced when fabricating PERC cells is low fill factors due to high series resistance. This paper identifies and attempts to quantify sources of series resistance in inkjet-patterned PERC cells that employ electroless or light-induced nickel-plating techniques followed by copper light-induced plating. Photoluminescence imaging is used to determine locations of series resistance losses in these inkjet-patterned and plated PERC cells
Synovitis in osteoarthritis: current understanding with therapeutic implications
Modern concepts of osteoarthritis (OA) have been forever changed by modern imaging phenotypes demonstrating complex and multi-tissue pathologies involving cartilage, subchondral bone and (increasingly recognized) inflammation of the synovium. The synovium may show significant changes, even before visible cartilage degeneration has occurred, with infiltration of mononuclear cells, thickening of the synovial lining layer and production of inflammatory cytokines. The combination of sensitive imaging modalities and tissue examination has confirmed a high prevalence of synovial inflammation in all stages of OA, with a number of studies demonstrating that synovitis is related to pain, poor function and may even be an independent driver of radiographic OA onset and structural progression. Treating key aspects of synovial inflammation therefore holds great promise for analgesia and also for structure modification. This article will review current knowledge on the prevalence of synovitis in OA and its role in symptoms and structural progression, and explore lessons learnt from targeting synovitis therapeutically
Expression of lysophosphatidic acid acyltransferase beta (LPAAT-β) in ovarian carcinoma: correlation with tumour grading and prognosis
Lysophosphatidic acid acyltransferase beta (LPAAT-β) is an enzyme involved in lipid biosynthesis whose role in tumour progression has been of emerging interest in the last few years. We investigated the expression of LPAAT-β by reverse transcriptase–polymerase chain reaction and immunohistochemistry in 10 ovarian cell lines as well as in a cohort of 106 ovarian tumours and normal ovaries. Lysophosphatidic acid acyltransferase beta mRNA was found in all cell lines and ovarian tumours examined. Expression of LPAAT-β protein was significantly increased in ovarian carcinomas compared to benign ovarian tissue (χ2 test P-value=0.001, Kruskal–Wallis test P-value <0.0001). Furthermore, LPAAT-β expression was positively associated with higher tumour grade (P=0.044), higher mitotic index (P<0.0001) and tumour stage (P=0.032). Expression of LPAAT-β was significantly linked to reduced overall survival time (P=0.024) as well as to shorter progression-free survival time (P=0.012) in patients younger than 60 years. Our study shows that LPAAT-β is upregulated in ovarian cancer and is more prevalent in poorly differentiated tumours. In addition, LPAAT-β expression is a predictor of a worse prognosis in patients younger than 60 years. Further studies are needed to investigate if LPAAT-β may serve as a therapeutic target for certain subgroups of patients
Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light–tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine
Reduced Physiological Complexity in Robust Elderly Adults with the APOE ε4 Allele
BACKGROUND:It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations. The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms in the APOE allele among elderly individuals. METHODOLOGY/PRINCIPAL FINDINGS:A total of 102 robust, non-demented, elderly subjects with normal functions of daily activities participated in this study (97 males and 5 females, aged 79.2+/-4.4 years, range 72-92 years). Among these individuals, the following two APOE genotypes were represented: epsilon4 non-carriers (n = 87, 85.3%) and epsilon4 carriers (n = 15, 14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the presence of the APOE epsilon4 allele in healthy elderly subjects, as compared to APOE epsilon4 allele non-carriers (24.6+/-5.5 versus 28.9+/-5.2, F = 9.429, p = 0.003, respectively). CONCLUSIONS/SIGNIFICANCE:This finding suggests a role for the APOE gene in the diminished physiological complexity seen in elderly populations
With a biomechanical treatment in knee osteoarthritis, less knee pain did not correlate with synovitis reduction
© 2017 The Author(s). Background: Braces are used to treat pain in patellofemoral joint osteoarthritis (PFJOA). In a trial, we previously reported pain improvement after 6-weeks brace use. The pain reduction did not correlate with changes in Magnetic Resonance Imaging (MRI) assessed Bone Marrow Lesion volume or static synovial volume. Studies show that changes in the synovium on dynamic contrast enhanced (DCE) MRI are more closely associated with symptom change than static synovial volume changes. We hypothesised change in synovitis assessed using dynamic imaging could explain the reduction in pain. Method: One hundred twenty-six men and women aged 40-70 years with painful radiographically confirmed PFJOA were randomised to either brace wearing or no brace for 6-weeks. Pain assessment and DCE-MRI were performed at baseline and 6 weeks. DCE data was analysed using Tofts's equation. Pain measures included a VAS of pain on nominated aggravating activity (VAS NA ), and the KOOS pain subscale. Paired t-tests were used to determine within person change in outcome measures and Spearman's correlation coefficients were used to determine the correlation between change in pain and change in the DCE parameters. Results: Mean age of subjects was 55.5 years (SD = 7.5) and 57% were female. There was clear pain improvement in the brace users compared to controls (VAS NA - 16.87 mm, p = < 0.001). There was no significant change to the dynamic synovitis parameters among brace users nor was pain change correlated with change in dynamic synovitis parameters. Conclusion: The reduction in knee pain following brace wearing in patients with PFJOA is not explained by changes in synovitis. Trial registration: Trial registration number UK. ISRCTN50380458 /Registered 21.5.2010
Olfactory discrimination predicts cognitive decline among community-dwelling older adults
The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46–86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin' Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio=0.869; P<0.05; 95% confidence interval=0.764−0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia
Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility “Hot-Spot”
We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n = 675) and controls (n = 1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs—PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616—were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n = 1,233 serous invasive cases; n = 3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele≥0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele = 0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04–1.24) p = 0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus
- …