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Cancer photomedicine offers unique mechanisms for inducing local tumor damage

with the potential to stimulate local and systemic anti-tumor immunity. Optically-active

nanomedicine offers these features as well as spatiotemporal control of tumor-focused

drug release to realize synergistic combination therapies. Achieving quantitative

dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for

personalizing and tailoring therapeutic regimens to specific patients and anatomical

locations. The challenge of dosimetry is perhaps greater for photomedicine than

many standard therapies given the complexity of light delivery and light–tissue

interactions as well as the resulting photochemistry responsible for tumor damage

and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An

emergingmultidisciplinary approach in oncology utilizesmathematical and computational

models to iteratively and quantitively analyze complex dosimetry, and biological response

parameters. These models are parameterized by preclinical and clinical observations and

then tested against previously unseen data. Such calibrated and validated models can

be deployed to simulate treatment doses, protocols, and combinations that have not yet

been experimentally or clinically evaluated and can provide testable optimal treatment

outcomes in a practical workflow. Here, we foresee the utility of these computational

approaches to guide adaptive therapy, and how mathematical models might be further

developed and integrated as a novel methodology to guide precision photomedicine.
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INTRODUCTION

Photodynamic therapy (PDT) has been developed as a clinical
therapy over the past century with origins dating back to
ancient civilizations and applications for skin diseases using
plant extracts and sunlight [1, 2]. Contemporary photodynamic
chromophores for PDT, often termed photosensitizers (PS),
feature enhanced photophysical properties for deep-tissue
absorption of far-red laser light and for generating cytotoxic,
activated chemical species (including reactive oxygen species).
These modern PS are often engineered to rapidly clear from the
skin and body to minimize the risk of severe sunburn—the major
potential side-effect of otherwise non-toxic photomedicines [1,
2]. An example of clinical impact has been the use of PDT as
a frontline therapy in ophthalmology for the wet form of age-
related macular degeneration (wet AMD). PDT has benefited
several 100,000 AMD patients worldwide since the early 2000s
[3, 4]. In oncology applications, PDT offers unique modes of cell
death induction [5–7] that bypass many mechanisms of classical
drug resistance [8], and tumor specificity with low toxicity to off-
target tissues and organs when light activation is confined to the
tumor site [1, 2]. A number of molecular-targeted PDT agents
(e.g., antibody-PS conjugates) are emerging with enhanced tumor
selectivity in preclinical models [9–16] as well as optically-active
nanomedicine [17–19] to facilitate spatiotemporal control of
multi-drug combination therapies that damage various tumor
compartments in concert (e.g., cancer cells, tumor-supportive
stromal cells, andmicrovasculature) while suppressingmetastatic
escape [19]. These advances promise to impact oncology more
substantially than the present use of unformulated PS agents.

Another potential intrinsic advantage of photomedicine is
that, rather than suppressing the immune system, it can stimulate
acute inflammation, tumor-antigen exposure, and anti-tumor
immunity [20]. A comprehensive review by Castano et al.
summarizes the preclinical data demonstrating that PDT can be
used to stimulate the host immune system [20]. For instance,
it has been shown that pro-inflammatory cytokines are released
following the administration of PDT in mouse models [20, 21].
In addition, PDT can increase the exposure of tumor-antigens to
the host immune system. PDT-induced tumor necrosis facilitates
the release of extra-cellular heat-shock protein (HSP) family
members, such as HSP70 [20, 22]. HSP70 is a protein folding
chaperone that stabilizes potential tumor-antigens and these
HSP70–peptide tumor antigen complexes are thought to help
stimulate an immune response through HSP binding to antigen-
presenting cells, which in turn ultimately present the potential
tumor antigens to CD8+ cytotoxic T cells [20]. However,
PDT dosimetry is salient to maximizing anti-tumor immune
stimulation vs. extensive tumor destruction that can counteract
some of these mechanisms; e.g., high-dose PDT is more likely to
interfere with immune cell trafficking in and out of the tumor
by shutting down the tumor microvasculature. Gollnick et al.
introduced an immune-enhancing PDT regime distinct from
the conventional goal of maximal tumor damage [23]. Immune-

enhancing PDT is performed at lower doses that promote acute
inflammation and neutrophil infiltration into the tumor; and,
a follow-up high-dose PDT regimen can be applied to reduce

the tumor volume once the immune system is activated [23].
The use of low-dose and metronomic therapy is also being
investigated for immune-enhancing effects for chemotherapy
and radiotherapy [24, 25].

To the best of our knowledge, a comprehensive clinical study
in humans of PDT-tumor immune modulation has not been
performed although such a study is warranted. However, PDT-
induced stimulation of the immune system is hypothesized as
a candidate for clinical observations of increases in overall
survival following PDT. A recent example is the finding that lung
sparing surgery combined with intraoperative PDT of the chest
cavity [26–28], followed by adjuvant chemotherapy, achieves
remarkably extended survival for patients with malignant pleural
mesothelioma compared to standard therapies [28]. The median
overall survival of patients who received lung sparing surgery
and intraoperative PDT is extended more than 2 years (3-
year median overall survival) compared to patients treated by
standard surgery with adjuvant chemotherapy (8-month median
overall survival) [28]. The remarkable enhancement in survival
extends ∼2 years beyond the median time to disease recurrence
(∼1 year), which may suggest an anti-tumor immune-enhancing
effect from PDT that also benefits from the sparing of lung
tissue and the associated lymph nodes [28]. Inhibition of T
cell egress from tumor-draining lymph nodes has recently been
demonstrated to drastically limit antitumor immunity post
radiation [29], spurring discussion for investigations into lymph
node sparing in radiotherapy [30].

Like radiation therapy, PDT requires robust production of
activated chemical species in order to illicit inflammation and
cell death. PDT-based treatments involve the administration of
a PS, which is non-toxic until it absorbs visible light, and the PS
then facilitates the conversion of molecular oxygen into reactive
oxygen species, among other photochemical mechanisms of
producing activated reactive species, which are known to damage
tumors by several mechanisms [2]. For instance, PDT can be
applied to curtail the tumor microvasculature to starve tumors
of nutrients [31], and it is also possible to produce direct
tumor cell death via apoptosis, necrosis and other cell death
pathways [7, 32], or a combination of tumor vascular and
cellular effects [33]. Importantly, the PS-light interval can impact
which compartment of the tumor receives the damage based
on the pharmacokinetics of the PS [33]; and, the subcellular
localization of the PS also determines the stimulation of specific
cell death pathways and the interaction of PDT with other modes
of therapy [7, 8, 34–36].

Given the intricacies of PDT dosimetry, an ongoing dilemma
is the lack of robust PDT dosimetry tools. These technologies are
still maturing, and cutting-edge advances have yet to be translated
to the clinic. However, advanced imaging modalities report
prognostic indicators of biological responses [37], and significant
advances in developing both explicit and implicit metrics of the
photodynamic dose deposited in target sites have yielded exciting
data ripe for rigorous analysis [37–41]. However, very little
attention is given in general to a priori optimization of dose, dose
fractionation, treatment timing, and sequencing of synergistic
treatments among oncologists and cancer researchers. An
exhaustive preclinical and clinical evaluation of all possible doses
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and treatment combinations is impossible. Recently, progress
in integrated mathematical oncology, a powerful approach
that iteratively utilizes experimental and clinical data to build
calibrated quantitative models to predict response to untested
treatments and treatment combinations, makes such complex
analysis approachable [42, 43]. Development, calibration, and
validation of quantitative and predictive models are critical in
order to focus experimental and clinical trial design on regimens
that maximize efficacy and quality of life.

INTEGRATED
MATHEMATICAL ONCOLOGY

Mathematical modeling in cancer research has a long history
[42–47]. Mathematical oncology approaches often incorporate
first-order mechanistic principles of tumor growth laws [48, 49],
ecology, and evolution [50–53], and increasingly interactions
with the immune system [54–59] to simulate biological responses
to a variety of therapies [60–66]. One class of mathematical
models may follow a “bottom-up” approach, where mechanisms
on specific biological or temporal scales (i.e., subcellular, or
cellular dynamics) are describedmathematically, and simulations
reveal emergent properties on larger scales (cellular, tissue level,
organ level). Vis-à-vis “bottom-up” is the top-down approach,
where modeling the dynamics on a higher level (for example
a tumor population) may provide insights on the underlying
mechanisms of the system (for example, cellular properties,
and cell-cell interactions). A detailed summary of the most
appropriate mathematical techniques for the different biological,
temporal, and spatial scales with illustrative examples can be
found elsewhere [67].

One recent application of successful mathematical
oncology has demonstrated the translation of the ecological
and evolutionary principles of emerging cancer treatment
resistance into a clinical trial of adaptive therapy of metastatic
castrate-resistant prostate cancer [68]. Simulations of a simple
evolutionary game of three competing cancer cell subtypes
and their distinct susceptibilities to a single drug (abiraterone,
an inhibitor of testosterone production used for androgen-
deprivation therapy) suggest that, instead of aiming for an
impossible cure with continuous treatment, adaptive intermittent
therapy could control the tumor by maintaining competition
among the three cancer cell subtypes. With this approach, the
androgen-independent cell population is not able to proliferate
and establish the treatment refractory, and ultimately lethal,
abiraterone-resistant disease [68]. In the prospective clinical
study of adaptive hormone treatment, the majority of patients
maintained stable oscillations of tumor burden for at least 27
months (10 of 11 patients were still progression free with stable
tumor burden at the time of publication) using only 47% of
the normal cumulative drug dose, whereas the median time
to progression is 16.5 months for standard dosing [68]. An
alternative strategy to successfully combat resistance may be to
not target individual cell populations, but to change the fitness
and cost of their interactions with each other and their tissue
environments [69].

A wealth of knowledge exists already in the literature
regarding the intricacies of PS pharmacokinetics, PS cellular
localization, and photodynamic dosimetry [2]; and, there
is considerable preclinical data deciphering the complex
spatiotemporal interplay of PDT with the tumor and the tumor
microenvironment that may increase the likelihood of treatment
success [2]. Many of the biological factors influencing the efficacy
of PDT as well as molecular mechanisms of tumor response
to PDT have been elucidated. While clinical trials for new
therapies are plentiful (including PDT), with a few exceptions,
most are based on limited pre-clinical studies with arbitrarily
chosen treatment parameters. This motivates the development
and application of mathematical and computational models
that capture salient features from the preclinical and clinical
knowledgebase to make reliable predictions by conducting the
experiments in silico to identify a small set of potentially
optimal protocols for experimental testing. Unexpected novel
insights and breakthroughs may also be garnered from the
simulations that are hard to anticipate due to the multiparameter
nature of combination therapies and tumor biology—such as the
hypothesis that adaptive therapy with intermittent dosing and
drug holidays [53, 68, 70–76] can lead to stable tumor oscillations
that has now shown remarkable promise in the clinic [68].

The fundamental importance of photodynamic dosimetry
for achieving local tumor control, drug-release, and synergistic
interactions with other therapeutic modalities, has motivated
the development of mathematic models of photochemistry
and photophysics as well as dosimetry and dose deposition
[39, 77–80]. Other modeling studies focused on identifying
optimal oxygenation conditions for PDT effects [81, 82], and
on information processing and cellular decision-making during
PDT to predict cell survival [83]. In a number of recent
studies, the effect of cell death through apoptosis and necrosis
was quantitatively modeled [84, 85]. These studies suggest that
PDT is most likely successful in tumors with high surface-to-
volume ratios, and that PDT is unlikely to provide control in
fast proliferating deep tumor tissues, which supports previous
model results for low-penetrating red-light PDT [86]. As PDT
and radiation therapy share similar biological responses and
routine involvement of medical physics, modeling approaches
for radiotherapy response may be readily translatable to identify
optimal PDT protocols [59, 61, 63, 87–93]. In this Perspective,
we suggest integrated mathematical oncology as a computational
platform for developing quantitative models and simulations of
PDT dosimetry to optimize local tumor control, tumor-focused
drug release, spatiotemporal dynamics, and photodynamic
priming of systemic modes of therapy. Based on the wealth of
available mathematical models and increasingly emerging data
on PDT, it is conceivable that established mathematical oncology
workflows can be adapted to PDT. Integrating preclinical and
clinical experience with computational models and simulation,
in an iterative approach with continuous refinements based on
observed results, will identify the most promising protocols for
subsequent experimental and clinical validation (Figure 1). This
computational model-guided approach to research and clinical
oncology promises an efficient, cost-effective, and safe approach
to synergize with experimental study design.
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FIGURE 1 | Proposed work flow for integrating pre-clinical and clinical data with quantitative models of PDT dosimetry, synergies with other therapies, and

interactions with tumor biology. The model is calibrated to unify observations from human data and preclinical biological models, and applied to simulate many

possible clinical treatment regimens. Optimal regimens are then identified and can be tested in preclinical and clinical studies. Further, results from biological models

and human studies may then be used to further refine the computational model as needed in an iterative approach. Online simulation may also be used to guide

personalized and adaptive therapy tailored to individual patients and tumor biology dynamics using feedback from clinical tests and imaging data throughout the

course of the treatment. Color-coding suggests time-to-realization for these steps: green boxes indicate that a great deal of data is available in the existing literature;

yellow boxes indicate experiments and models that can be immediately developed; orange boxes indicate steps that require preliminary work to be done first; and, the

red box (Clinical Trial) represents the overarching goal for this workflow. PK, pharmacokinetics; PD, pharmacodynamics. Adapted from McGuire et al. [60].

TOWARD A MATHEMATICAL MODEL OF
IMMUNE-ENHANCING PDT

Cancer therapy success may be a combination of the direct
lethal effect on cancer cells and, possibly more importantly,
the subsequent indirect effect of stimulating a potent antitumor
immune response. Tumors grow in a complex ecosystem that is
the result of co-evolution of the tumor with its host environment.
A contribution of the complex tumor microenvironment to
treatment outcome is increasingly appreciated. Focal therapies
like PDT and radiation can potentially induce a robust antitumor
immune response that provides a second wave of cell kill and
tumor regression [94, 95]. Functional immunity is comprised
of two main conceptual components: (1) immune effector
populations that act to regress the tumor including natural
killer (NK) cells, N1 neutrophils, CD4+ helper T (Th) cells,
CD8+ cytotoxic (CTL) T cells, M1 macrophages and mature

dendritic cells (DC); and (2), immune suppressor cells that
facilitate tumor escape, including N2 neutrophils, regulatory
T (Treg) cells, myeloid-derived suppressor cells (MDSC), M2
macrophages, and tolerogenic DC [96]. After immune effector
populations become activated against a pathogen or, as in cancer,
against cells presenting abnormal antigens, immune suppression
is a natural response to prevent autoimmune diseases. As an
example, Tregs can suppress antitumor immunity through a
variety of mechanisms, including inhibition of DC maturation
and function, release of inhibitory cytokines such as TGFβ, and
high expression of the IL-2 co-receptor CD25 that deprives
the environment of IL-2 and thereby disrupts CD8+ T cell
proliferation and granzyme A and B-dependent effector T-cell
cytolysis [97]. Our present understanding of this network of
immune effectors vs. immune suppressors can in principle be
modeled to guide the development of therapies that can help shift
the local tumor environment away from immunosuppression
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by bypassing or reducing checkpoints to effector immune
cell activity.

Despite recent advancements in cancer immunotherapy,
mainstay cancer therapies have not yet specifically focused on
enhancing the immune response to tumor antigens to help
eliminate or control tumors. Radiation therapy, for example,
increases the mutational burden and induces cell stress as well as
immunogenic cell death, thereby exposing an array of otherwise
hidden and de novo tumor-associated antigens, stress proteins,
and danger-associated molecular patterns to the immune system
[98, 99]. Yet standard daily radiation over many weeks may
be detrimental to antitumor immunity, as CD8+ T cells are
generally very radiation sensitive [100]. Tumor infiltrating
lymphocyte (TIL) enrichment after neoadjuvant radiation (RT
before surgery) was previously assessed for 40 rectal cancer
patients. The densities of CD3+ and CD8+ T lymphocytes
significantly increased from pre-treatment biopsy specimens to
post-treatment surgically resected specimens [101]. Neoadjuvant
RT for early stage breast cancer significantly improves disease-
free survival compared to radiation after surgery, arguably due to
induction of robust antitumor immunity and immune memory
[102]. Numerous clinical trials are currently underway exploring
different radiation dose and dose fractionation protocols for
clinical efficacy against the targeted tumor and induction of
systemic antitumor immunity. However, the large number of
possible treatment protocols make a trial-and-error approach
unlikely to be successful, and the quest for optimal treatment
protocols and treatment combinations may need to include
mathematical modeling [30]. As recently demonstrated for
radiation-induced local and systemic antitumor immunity,
mathematical models may be parameterized by preclinical and
clinical data to simulate an array of possible treatment regimens
with varying therapeutic modalities, drug dosages, and treatment
sequences [44]. Model predictions of optimal treatments can
be tested in pre-clinical studies and ultimately prospective
clinical trials.

Enhanced selectivity of PDT presents a great opportunity to
overcome the limitations of chemotherapy and radiotherapy to
potentially impact the efficacy of immune checkpoint inhibitors,
and guidance from mathematical modeling may be readily

available. The numerous models on tumor-immune interactions
studies [55–57, 103] and radiation responsemodeling studies [59,
89, 104–106] may translate directly to PDT, albeit with different
model parameters. These can be obtained from relatively simple
and well thought-out in vitro and in vivo studies (Figure 1).

CONCLUSIONS

In summary, PDT offers unique selectivity and mechanisms
of action for eliciting tumor damage, overcoming classical
drug-resistance, and enhancing anti-tumor immunity with
a toxicity profile distinct from standard radiation and
chemotherapy. To fully harness the benefits of PDT requires
complex dosing and scheduling with concurrent treatments.
Even arguably simple mathematical models can provide
deep insights, and we forecast that the power and utility of
integrated models will grow as the molecular underpinnings
and multi-scale behavior of the complex tumor ecosystems
is further elucidated and incorporated into these models.
The rapid advancement of bioinformatics to characterize
tumor genetic, transcriptome, and epigenetic heterogeneity
as well as molecular mechanisms of interactions with the
host microenvironment and immune system will greatly
advance current phenomenological models—with the ultimate
goal to create a multi-scale computational platform that
integrates molecular-level detail, evolutionary principles, and
systems biology.
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