123 research outputs found

    Early signaling events induced by elicitors of plant defenses.

    Get PDF
    Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elicitor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models

    Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices

    Get PDF
    NO is an important regulatory molecule in eukaryotes. Much of its effect is ascribed to the action of NO as a signalling molecule. However, NO can also directly modify proteins thus affecting their activities. Although the signalling functions of NO are relatively well recognized in plants, very little is known about its potential influence on the structural integrity of plant cells. In this study, the reorganization of the actin cytoskeleton, and the recycling of wall polysaccharides in plants via the endocytic pathway in the presence of NO or NO-modulating substances were analysed. The actin cytoskeleton and endocytosis in maize (Zea mays) root apices were visualized with fluorescence immunocytochemistry. The organization of the actin cytoskeleton is modulated via NO levels and the extent of such modulation is cell-type specific. In endodermis cells, actin cables change their orientation from longitudinal to oblique and cellular cross-wall domains become actin-depleted/depolymerized. The reaction is reversible and depends on the type of NO donor. Actin-dependent vesicle trafficking is also affected. This was demonstrated through the analysis of recycled wall material transported to newly-formed cell plates and BFA compartments. Therefore, it is concluded that, in plant cells, NO affects the functioning of the actin cytoskeleton and actin-dependent processes. Mechanisms for the reorganization of the actin cytoskeleton are cell-type specific, and such rearrangements might selectively impinge on the functioning of various cellular domains. Thus, the dynamic actin cytoskeleton could be considered as a downstream effector of NO signalling in cells of root apices

    Inhibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine betaine biosynthesis

    Get PDF
    Nitric oxide synthase-like activity contributes to the production of nitric oxide in plants, which controls plant responses to stress. This study investigates if changes in ascorbate peroxidase enzymatic activity and glycine betaine content in response to inhibition of nitric oxide synthase-like activity are associated with transcriptional regulation by analyzing transcript levels of genes (betaine aldehyde dehydrogenase) involved in glycine betaine biosynthesis and those encoding antioxidant enzymes (ascorbate peroxidase and catalase) in leaves of maize seedlings treated with an inhibitor of nitric oxide synthase-like activity. In seedlings treated with a nitric oxide synthase inhibitor, transcript levels of betaine aldehyde dehydrogenase were decreased. In plants treated with the nitric oxide synthase inhibitor, the transcript levels of ascorbate peroxidase-encoding genes were down-regulated. We thus conclude that inhibition of nitric oxide synthase-like activity suppresses the expression of ascorbate peroxidase and betaine aldehyde dehydrogenase genes in maize leaves. Furthermore, catalase activity was suppressed in leaves of plants treated with nitric oxide synthase inhibitor; and this corresponded with the suppression of the expression of catalase genes. We further conclude that inhibition of nitric oxide synthase-like activity, which suppresses ascorbate peroxidase and catalase enzymatic activities, results in increased H2O2 content

    NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley

    Get PDF
    Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores

    Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus

    Get PDF
    Las raíces de las plántulas de olivo, en cultivo axénico, fueron colocadas alternativamente en contacto con Rhizophagus irregulares (micorrícicos) o con hongos Verticillim dahliae (patógenos). También se incluyeron tratamientos MeJA. Las raíces intactas (generación de anión superóxido, superóxido dismutasa y actividades de peroxidasa) se midieron en las actividades in vivo del apoplasto. Todos nuestros resultados mostraron que las actividades redox apoplásticas de raíces de las plántulas intactas en contacto con el hongo micorriza compatible fueron claramente atenuados en comparación con el hongo patógeno o tratado con MeJA, incluso en las primeras etapas usadas en el tratamiento. Los fenoles totales, flavonoides y glucósidos fenilpropanoides, también fueron cuantificados. Las raíces en contacto con el hongo micorriza no mejoraron la biosíntesis de compuestos fenólicos con respecto a los controles, mientras que los de contacto con el patógeno mejoraron de forma significativa la biosíntesis de todas las fracciones fenólicas medidas. Las especies reactivas del oxígeno y la acumulación de óxido nítrico en las raíces fueron examinadas por microscopía de fluorescencia. Todos ellas presentaron una acumulación mucho mayor en las raíces en contacto con el patógeno que con el hongo micorriza. En total, estos resultados indican que las raíces de las plántulas intactas de olivo, claramente diferenciadas entre micorrizas y hongos patógenos, atenuan las reacciones de defensa contra la primera para facilitar su creación, mientras que induce una reacción de defensa fuerte y sostenida contra el segundo. Ambas especies reactivas de oxígeno y nitrógeno parecían estar involucrados en estas respuestas desde los primeros momentos de contacto. Sin embargo, se necesitan más investigaciones para aclarar la diafonía propuesta entre ellos y sus respectivas funciones en estas respuestas ya que las imágenes de fluorescencia de las raíces revelaron que las especies reactivas del oxígeno se acumulan principalmente en el apoplasto (congruente con las actividades redox medidas en este compartimento), mientras el óxido nítrico se almacena principalmente en el citosol.Roots of intact olive seedlings, axenically cultured, were alternatively placed in contact with Rhizophagus irregularis (mycorrhizal) or Verticillim dahliae (pathogenic) fungi. MeJA treatments were also included. In vivo redox activities in the apoplast of the intact roots (anion superoxide generation, superoxide dismutase and peroxidase activities) were measured. All our results showed that apoplastic redox activities of intact seedling roots in contact with the compatible mycorrhizal fungus were clearly attenuated in comparison with the pathogenic fungus or treated with MeJA, even at the early stages of treatment used. Total phenolics, flavonoids and phenylpropanoid glycosides were also quantified. Roots in contact with the mycorrhizal fungus did not enhance the biosynthesis of phenolic compounds with respect to controls, while those in contact with the pathogenic one significantly enhanced the biosynthesis of all phenolic fractions measured. Reactive oxygen species and nitric oxid accumulation in roots were examined by fluorescence microscopy. All of them presented much higher accumulation in roots in contact with the pathogenic than with the mycorrhizal fungus. Altogether these results indicate that intact olive seedling roots clearly differentiated between mycorrhizal and pathogenic fungi, attenuating defense reactions against the first to facilitate its establishment, while inducing a strong and sustained defense reaction against the second. Both reactive oxygen and nitrogen species seemed to be involved in these responses from the first moments of contact. However, further investigations are required to clarify the proposed crosstalk between them and their respective roles in these responses since fluorescence images of roots revealed that reactive oxygen species were mainly accumulated in the apoplast (congruently with the measured redox activities in this compartment) while nitric oxid was mainly stored in the cytosol.-- Ministerio de Ciencia e Innovación. Proyecto CGL2009-12406 -- Junta de Extremadura. Proyecto PRI09A023peerReviewe

    Increased Anion Channel Activity Is an Unavoidable Event in Ozone-Induced Programmed Cell Death

    Get PDF
    Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death.-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation

    Airborne Signals from a Wounded Leaf Facilitate Viral Spreading and Induce Antibacterial Resistance in Neighboring Plants

    Get PDF
    Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants (“emitters”) on the defensive reactions of neighboring “receiver” plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring “receiver” plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of “receiver” plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the “receivers”. Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants

    Caractérisation des sites de fixation de la cryptogéine, un éliciteur des réactions de défense chez le tabac (Nicotiana tabacum) et rôle du calcium dans la transduction du signal

    No full text
    *INRA BP 86510 21065 Dijon cedex (FRA) Diffusion du document : INRA BP 86510 21065 Dijon cedex (FRA) Diplôme : Dr. d'Universit

    Caractérisation des sites de fixation de la cryptogéine, un éliciteur des réactions de défense chez le tabac (Nicotiana tabacum) et rôle du calcium dans la transduction du signal

    No full text
    *INRA BP 86510 21065 Dijon cedex (FRA) Diffusion du document : INRA BP 86510 21065 Dijon cedex (FRA) Diplôme : Dr. d'Universit
    corecore