16 research outputs found

    Whole Genome Distribution and Ethnic Differentiation of Copy Number Variation in Caucasian and Asian Populations

    Get PDF
    Although copy number variation (CNV) has recently received much attention as a form of structure variation within the human genome, knowledge is still inadequate on fundamental CNV characteristics such as occurrence rate, genomic distribution and ethnic differentiation. In the present study, we used the Affymetrix GeneChip® Mapping 500K Array to discover and characterize CNVs in the human genome and to study ethnic differences of CNVs between Caucasians and Asians. Three thousand and nineteen CNVs, including 2381 CNVs in autosomes and 638 CNVs in X chromosome, from 985 Caucasian and 692 Asian individuals were identified, with a mean length of 296 kb. Among these CNVs, 190 had frequencies greater than 1% in at least one ethnic group, and 109 showed significant ethnic differences in frequencies (p<0.01). After merging overlapping CNVs, 1135 copy number variation regions (CNVRs), covering approximately 439 Mb (14.3%) of the human genome, were obtained. Our findings of ethnic differentiation of CNVs, along with the newly constructed CNV genomic map, extend our knowledge on the structural variation in the human genome and may furnish a basis for understanding the genomic differentiation of complex traits across ethnic groups

    Root litter diversity and functional identity regulate soil carbon and nitrogen cycling in a typical steppe

    No full text
    Root litter decomposition is the dominant source of soil organic carbon (C) and nitrogen (N) in grasslands. Few studies, however, have explored the effect of root litter diversity on soil C and N cycling. This study investigated the effects of species diversity and functional traits of root litter on soil CO2 and N2O release, net ammonification, net nitrification, and net N mineralization based on a 56-day incubation of grassland soils with root litter mixtures containing one, two, or four native plant species. The increasing species richness of root litter decreased the cumulative CO2 and N2O release in the soil, but enhanced the net ammonification, nitrate immobilization, and N mineralization. Root litter diversity has a predominant non-additive antagonistic effect on the release of soil CO2 and N2O, and a synergistic effect on the net ammonification, nitrate immobilization, and N mineralization in the soil. The functional identity rather than functional diversity of root traits explains most of the variation in soil C and N cycling. A high C: N ratio and low concentrations of N, P, K, and Di-O-alkyl-C (characteristic of celluloses) were found to be key to the antagonistic effects associated with cumulative release of CO2 from the soil. For net N ammonification and mineralization, the synergistic effect was principally induced by the high levels of carbohydrate-C and N and the low C: N ratios in root litter mixtures. Our study highlights the role and mechanisms of increased root litter diversity in decreasing soil CO2 and N2O release and in increasing the net N mineralization via non-additive antagonistic and synergistic effects of dominant root traits

    Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells

    No full text
    The outbreak of cyanobacterial blooms induces the production and release of microcystins (MCs) into water, representing a health hazard to aquatic organisms and even humans. Some recent studies have suggested that kidney is another important target organ of MCs except liver, however, the potential toxicity mechanisms are still unclear. In this study, we first investigated the collaborative effect of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK (Ctenopharyngodon idellus kidney) cells in vitro. CIK cells were treated with 0, 1, 10, and 100 mu g/L microcystin-LR (MC-LR) for 24 and 48 h. Cell viability was increased by MC-LR in 1 mu g/L group, while decreased in 100 mu g/L group at 48 h. Cell cycle assay showed that 1 and 10 mu g/L MC-LR induced cell cycle through G(1) into S and G(2)/M phases, while 100 mu g/L MC-LR reduced G2/M phase population. MC-LR markedly induced apoptosis in 10 and 100 mu g/L groups. Elevated reactive oxygen species (ROS) production, increased malondialdehyde (MDA) contents, decreased glutathione (GSH) levels, and modulated antioxidant enzymes including catalase (CAT) and superoxide dismutase (SOD) were observed in CIK cells exposed to MC-LR. These alterations were more pronounced at higher doses (10 and 100 mu g/L), indicating that oxidative stress was induced by MC-LR. Laser scanning confocal microscope observation showed aggregation and collapse of microfilaments (MFs) and microtubules (MTs) in CIK cells, and even loss of some cytoskeleton structure. Moreover, transcriptional changes of cytoskeletal genes (beta-actin, Ic3a, and keratin) were also determined, which have a high probability with cytoskeleton structure damage. Our data suggest that oxidative stress and cytoskeletal disruption may interact with each other and jointly lead to apoptosis and renal toxicity induced by MCs. (C) 2015 Elsevier B.V. All rights reserved

    Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary–lung axis

    No full text
    Abstract The immunomodulatory effects of ultraviolet B (UVB) radiation in human diseases have been described. Whether type 2 lung inflammation is directly affected by solar ultraviolet (UV) radiation is not fully understood. Here, we show a possible negative correlation between solar UVB radiation and asthmatic inflammation in humans and mice. UVB exposure to the eyes induces hypothalamus-pituitary activation and α-melanocyte-stimulating hormone (α-MSH) accumulation in the serum to suppress allergic airway inflammation by targeting group 2 innate lymphoid cells (ILC2) through the MC5R receptor in mice. The α-MSH/MC5R interaction limits ILC2 function through attenuation of JAK/STAT and NF-κB signaling. Consistently, we observe that the plasma α-MSH concentration is negatively correlated with the number and function of ILC2s in the peripheral blood mononuclear cells (PBMC) of patients with asthma. We provide insights into how solar UVB radiation-driven neuroendocrine α-MSH restricts ILC2-mediated lung inflammation and offer a possible strategy for controlling allergic diseases
    corecore