4,922 research outputs found

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel

    Get PDF
    This study aimed at improving the systemic bioavailability of propranolol-HCl by the design of transdermal drug delivery system based on chitosan nanoparticles dispersed into gels. Chitosan nanoparticles were prepared by ionic gelation technique using tripolyphosphate (TPP) as a cross-linking agent. Characterization of the nanoparticles was focused on particle size, zeta potential, surface texture and morphology, and drug encapsulation efficiency. The prepared freeze dried chitosan nanoparticles were dispersed into gels made of poloxamer and carbopol and the rheological behaviour and the adhesiveness of the gels were investigated. The results showed that smallest propranolol loaded chitosan nanoparticles were achieved with 0.2% chitosan and 0.05% TPP. Nanoparticles were stable in suspension with a zeta potential (ZP) above ±30 mV to prevent aggregation of the colloid. Zeta potential was found to increase with increasing chitosan concentration due to its cationic nature. At least 70% of entrapment efficiency and drug loading were achieved for all prepared nanoparticles. When chitosan nanoparticles dispersed into gel consisting of poloxamer and carbopol, the resultant formulation exhibited thixotropic behaviour with a prolonged drug release properties as shown by the permeation studies through pig ear skin. Our study demonstrated that the designed nanoparticles-gel transdermal delivery system has a potential to improve the systemic bioavailability and the therapeutic efficacy of propranolol-HCl

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Narrowband Biphotons: Generation, Manipulation, and Applications

    Full text link
    In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum interaction at the single-photon level. We also review recent experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters

    Get PDF
    Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system

    Health literacy, health status, and healthcare utilization of Taiwanese adults: results from a national survey

    Get PDF
    Abstract Background Low health literacy is considered a worldwide health threat. The purpose of this study is to assess the prevalence and socio-demographic covariates of low health literacy in Taiwanese adults and to investigate the relationships between health literacy and health status and health care utilization. Methods A national survey of 1493 adults was conducted in 2008. Health literacy was measured using the Mandarin Health Literacy Scale. Health status was measured based on self-rated physical and mental health. Health care utilization was measured based on self-reported outpatient clinic visits, emergency room visits, and hospitalizations. Results Approximately thirty percent of adults were found to have low (inadequate or marginal) health literacy. They tended to be older, have fewer years of schooling, lower household income, and reside in less populated areas. Inadequate health literacy was associated with poorer mental health (OR, 0.57; 95% CI, 0.35-0.91). No association was found between health literacy and health care utilization even after adjusting for other covariates. Conclusions Low (inadequate and marginal) health literacy is prevalent in Taiwan. High prevalence of low health literacy is not necessarily indicative of the need for interventions. Systematic efforts to evaluate the impact of low health literacy on health outcomes in other countries would help to illuminate features of health care delivery and financing systems that may mitigate the adverse health effects of low health literacy.http://deepblue.lib.umich.edu/bitstream/2027.42/78252/1/1471-2458-10-614.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78252/2/1471-2458-10-614.pdfPeer Reviewe

    Non-Equilibrium Edge Channel Spectroscopy in the Integer Quantum Hall Regime

    Full text link
    Heat transport has large potentialities to unveil new physics in mesoscopic systems. A striking illustration is the integer quantum Hall regime, where the robustness of Hall currents limits information accessible from charge transport. Consequently, the gapless edge excitations are incompletely understood. The effective edge states theory describes them as prototypal one-dimensional chiral fermions - a simple picture that explains a large body of observations and calls for quantum information experiments with quantum point contacts in the role of beam splitters. However, it is in ostensible disagreement with the prevailing theoretical framework that predicts, in most situations, additional gapless edge modes. Here, we present a setup which gives access to the energy distribution, and consequently to the energy current, in an edge channel brought out-of-equilibrium. This provides a stringent test of whether the additional states capture part of the injected energy. Our results show it is not the case and thereby demonstrate regarding energy transport, the quantum optics analogy of quantum point contacts and beam splitters. Beyond the quantum Hall regime, this novel spectroscopy technique opens a new window for heat transport and out-of-equilibrium experiments.Comment: 13 pages including supplementary information, Nature Physics in prin

    Crystallization and preliminary X-ray diffraction studies of piratoxin III, a D-49 phospholipase A(2) from the venom of Bothrops pirajai

    Get PDF
    Piratoxin III (PrTX-III) is a phospholipase A(2) (PLA(2), E.C. 3.1.1.4, phosphatide sn-2 acylhydrolase) isolated from Bothrops pirajai. Crystals of PrTX-III were obtained using the vapour-diffusion technique and X-ray diffraction data have been collected to 2.7 A resolution. The enzyme was crystallized in the space group C2 with unit-cell parameters a = 60.88, b = 100.75, c= 48.19 Angstrom, beta = 123.89 degrees. Angstrom molecular-replacement solution of the structure has been found using bothropstoxin I from the venom of B. jararacussu as a search model.5561229123

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page
    corecore