150 research outputs found

    Model-independent analysis for determining mass splittings of heavy baryons

    Full text link
    We study the hyperfine mass differences of heavy hadrons in the heavy quark effect theory (HQET). The effects of one-gluon exchange interaction are considered for the heavy mesons and baryons. Base on the known experimental data, we predict the masses of some heavy baryons in a model-independent way.Comment: 14 pages, 1 figur

    Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies

    Get PDF
    Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional map of halo gas around the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE 0435−1223 at redshift z = 1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z = 0.4188 and projected distance of ρ = 50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z = 0.7818 and ρ = 33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed Mg ii λλ2796, 2803 absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5–10 kpc at z > 0.2. A Mg ii absorber is detected in every sightline observed through the haloes of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO–galaxy pair studies. While the multisightline study confirms the unity covering fraction of Mg ii absorbing gas at ρ < 50 kpc from star-forming discs, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disc, collimated outflows and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width ≳10 kpc are found to best describe the observed gas kinematics across multiple sightlines. In addition, the observed velocity dispersion between different sightlines offers a crude estimate of turbulence in the Mg ii absorbing halo gas. The observations presented here demonstrate that multiple-QSO probes enable studies of spatially resolved gas kinematics around distant galaxies, which provide key insights into the physical nature of circumgalactic gas beyond the nearby Universe

    Kondo physics in the algebraic spin liquid

    Full text link
    We study Kondo physics in the algebraic spin liquid, recently proposed to describe ZnCu3(OH)6Cl2ZnCu_{3}(OH)_{6}Cl_{2} [Phys. Rev. Lett. {\bf 98}, 117205 (2007)]. Although spin dynamics of the algebraic spin liquid is described by massless Dirac fermions, this problem differs from the Pseudogap Kondo model, because the bulk physics in the algebraic spin liquid is governed by an interacting fixed point where well-defined quasiparticle excitations are not allowed. Considering an effective bulk model characterized by an anomalous critical exponent, we derive an effective impurity action in the slave-boson context. Performing the large-NσN_{\sigma} analysis with a spin index NσN_{\sigma}, we find an impurity quantum phase transition from a decoupled local-moment state to a Kondo-screened phase. We evaluate the impurity spin susceptibility and specific heat coefficient at zero temperature, and find that such responses follow power-law dependencies due to the anomalous exponent of the algebraic spin liquid. Our main finding is that the Wilson's ratio for the magnetic impurity depends strongly on the critical exponent in the zero temperature limit. We propose that the Wilson's ratio for the magnetic impurity may be one possible probe to reveal criticality of the bulk system

    Revealing the time lag between slope stability and reservoir water fluctuation from InSAR observations and wavelet tools— a case study in Maoergai Reservoir (China)

    Get PDF
    Reservoir water fluctuation in supply and storage cycle have strong triggering effects on landslides on both sides of reservoir banks. Early identification of reservoir landslides and revealing the relationship between slope stability and the triggering factors including reservoir level and rainfall, are of great significance in further protecting nearby residents’ lives and properties. In this paper, based on the small baseline subset time series method (SBAS-InSAR), the potential landslides with active displacements in the river bank of Maoergai hydropower station in Heishui County from 2018 to 2020 were monitored with Sentinel-1 data. As a result, a total of 20 unstable slopes were detected. Subsequently, it was found through a gray correlation analysis that the fluctuation of the reservoir water level is the main triggering factor for the displacement on unstable slopes. This paper applied wavelet tools to quantify the time lag between slope stability and reservoir water fluctuation, revealing that the displacement exhibits a seasonal trend, whose high-frequency signal displacement has an interannual period (1 year). Based on the Cross Wavelet Transform (XWT) analysis, under the interannual scale of one year, the reservoir water fluctuation and nonlinear displacement show a clear common power in wavelet. Additionally, a time lag of 65–120 days between slope stability and reservoir water fluctuations has been found, indicating that the non-linear displacements were behind the water level changes. Among the factors affecting the time lag, the elevation of the points and their distance to the bank shore show Pearson’s correlation coefficients of 0.69 and 0.70, respectively. The observed time lag and correlations could be related to the gradual saturation/drainage processes of the slope and the drainage path. This paper demonstrates the technical support to quantitatively reveal the time lag between slope stability and reservoir water fluctuation by InSAR and wavelet tools, providing strong support for the analysis of the mechanisms of landslides in Maoergai reservoir area.The work was supported by the National Natural Science Foundation of China (Grant No. 41801391), ESA-MOST China DRAGON-5 project (ref. 59339) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012) and Sichuan Science Foundation for Outstanding Youth (23NSFJQ0167)

    Automated Mapping of Ms 7.0 Jiuzhaigou Earthquake (China) Post-Disaster Landslides Based on High-Resolution UAV Imagery

    Get PDF
    The Ms 7.0 Jiuzhaigou earthquake that occurred on 8 August 2017 triggered hundreds of landslides in the Jiuzhaigou valley scenic and historic-interest area in Sichuan, China, causing heavy casualties and serious property losses. Quick and accurate mapping of post-disaster landslide distribution is of paramount importance for earthquake emergency rescue and the analysis of post-seismic landslides distribution characteristics. The automatic identification of landslides is mostly based on medium- and low-resolution satellite-borne optical remote-sensing imageries, and the high-accuracy interpretation of earthquake-triggered landslides still relies on time-consuming manual interpretation. This paper describes a methodology based on the use of 1 m high-resolution unmanned aerial vehicle (UAV) imagery acquired after the earthquake, and proposes a support vector machine (SVM) classification method combining the roads and villages mask from pre-seismic remote sensing imagery to accurately and automatically map the landslide inventory. Compared with the results of manual visual interpretation, the automatic recognition accuracy could reach 99.89%, and the Kappa coefficient was higher than 0.9, suggesting that the proposed method and 1 m high-resolution UAV imagery greatly improved the mapping accuracy of the landslide area. We also analyzed the spatial-distribution characteristics of earthquake-triggered landslides with the influenced factors of altitude, slope gradient, slope aspect, and the nearest faults, which provided important support for the further study of post-disaster landslide distribution characteristics, susceptibility prediction, and risk assessment.This work was funded by the National Key Research and Development Program of China (Project No. 2018YFC1505202), the National Natural Science Foundation of China (41941019), the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012), the project on identification and monitoring of potential geological hazards with remote sensing in Sichuan Province (510201202076888) and the Everest Scientific Project at Chengdu University of Technology (2020ZF114103)

    Large-scale dysfunctional white matter and grey matter networks in patients with social anxiety disorder.

    Get PDF
    Dysfunction of large-scale brain networks has been implicated in social anxiety disorder (SAD); most work has focused on grey matter (GM) functional connectivity (FC) abnormalities, whereas white matter (WM) FC alterations remain unclear. Here, using a K-means clustering algorithm, we obtained 8 GM and 10 WM functional networks from a cohort dataset (48 SAD patients and 48 healthy controls). By calculating and comparing FC matrices between SAD group and healthy controls, we demonstrated disrupted connections between the limbic and dorsal prefrontal, lateral temporal, and sensorimotor networks, and between the visual and sensorimotor networks. Furthermore, there were negative correlations between HAMD scores and limbic-dorsal prefrontal and limbic-sensorimotor networks, and between illness duration and sensorimotor-visual networks. These findings reflect the critical role of limbic network, with its extensive connections to other networks, and the neurobiology of disordered cognition processing and emotional regulation in SAD

    Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey

    Full text link
    We study the mass distribution of a sample of 28 galaxy clusters using strong and weak lensing observations. The clusters are selected via their strong lensing properties as part of the Sloan Giant Arcs Survey (SGAS) from the Sloan Digital Sky Survey (SDSS). Mass modelling of the strong lensing information from the giant arcs is combined with weak lensing measurements from deep Subaru/Suprime-cam images to primarily obtain robust constraints on the concentration parameter and the shape of the mass distribution. We find that the concentration c_vir is a steep function of the mass, c_vir \propto M_vir^-0.59\pm0.12, with the value roughly consistent with the lensing-bias-corrected theoretical expectation for high mass (10^15 h^-1 M_sun) clusters. However, the observationally inferred concentration parameters appear to be much higher at lower masses (10^14 h^-1 M_sun), possibly a consequence of the modification to the inner density profiles provided by baryon cooling. The steep mass-concentration relation is also supported from direct stacking analysis of the tangential shear profiles. In addition, we explore the two-dimensional shape of the projected mass distribution by stacking weak lensing shear maps of individual clusters with prior information on the position angle from strong lens modelling, and find significant evidence for a large mean ellipticity with the best-fit value of e = 0.47 \pm 0.06 for the mass distribution of the stacked sample. We find that the luminous cluster member galaxy distribution traces the overall mass distribution very well, although the distribution of fainter cluster galaxies appears to be more extended than the total mass.Comment: 29 pages, 15+9 figures, 7 tables, accepted for publication in MNRA

    Two Lensed Lyman-alpha Emitting Galaxies at z~5

    Full text link
    We present observations of two strongly lensed z∌5z\sim5 Lyman-α\alpha Emitting (LAE) galaxies that were discovered in the Sloan Giant Arcs Survey (SGAS). We identify the two sources as SGAS J091541+382655, at z=5.200z=5.200, and SGAS J134331+415455 at z=4.994z=4.994. We measure their AB magnitudes at (i,z)=(23.34±0.09,23.29±0.13(i,z)=(23.34\pm0.09,23.29\pm0.13) mags and (i,z)=(23.78±0.18,24.24−0.16+0.18(i,z)=(23.78\pm0.18,24.24^{+0.18}_{-0.16}) mags, and the rest-frame equivalent widths of the Lyman-α\alpha emission at 25.3±4.125.3\pm4.1\AA~and 135.6±20.3135.6\pm20.3\AA~for SGAS J091541+382655 and SGAS J134331+415455, respectively. Each source is strongly lensed by a massive galaxy cluster in the foreground, and the magnifications due to gravitational lensing are recovered from strong lens modeling of the foreground lensing potentials. We use the magnification to calculate the intrinsic, unlensed Lyman-α\alpha and UV continuum luminosities for both sources, as well as the implied star formation rates (SFR). We find SGAS J091541+382655 and SGAS J134341+415455 to be galaxies with (LLy−α_{Ly-\alpha}, LUV)≀(0.6_{UV})\leq(0.6LLy−α∗,2_{Ly-\alpha}^{*}, 2LUV∗_{UV}^{*}) and (LLy−α_{Ly-\alpha}, LUV)=(0.5_{UV})=(0.5LLy−α∗,0.9_{Ly-\alpha}^{*}, 0.9LUV∗_{UV}^{*}), respectively. Comparison of the spectral energy distributions (SEDs) of both sources against stellar population models produces estimates of the mass in young stars in each galaxy: we report an upper limit of Mstars≀7.9−2.5+3.7×107_{stars} \leq 7.9^{+3.7}_{-2.5} \times 10^{7} M_{\sun} h_{0.7}^{-1} for SGAS J091531+382655, and a range of viable masses for SGAS J134331+415455 of 2×1082\times10^{8} M_{\sun} h_{0.7}^{-1} < Mstars<6×109_{stars} < 6\times10^{9} M_{\sun} h_{0.7}^{-1}.Comment: 10 pages, 8 figures, emulate apj format, Accepted to Ap

    Basal LAT-diacylglycerol-RasGRP1 Signals in T Cells Maintain TCRα Gene Expression

    Get PDF
    In contrast to the well-characterized T cell receptor (TCR) signaling pathways that induce genes that drive T cell development or polarization of naïve CD4 T cells into the diverse TH1, TH2, TH17 and Treg lineages, it is unclear what signals maintain specific gene expression in mature resting T cells. Resting T cells residing in peripheral lymphoid organs exhibit low-level constitutive signaling. Whereas tonic signals in B cells are known to be critical for survival, the roles of tonic signals in peripheral T cells are unknown. Here we demonstrate that constitutive signals in Jurkat T cell lines are transduced via the adapter molecule LAT and the Ras exchange factor RasGRP1 to maintain expression of TCRα mRNA and surface expression of the TCR/CD3 complex. Independent approaches of reducing basal activity through the LAT-diacylglycerol-RasGRP pathway led to reduced constitutive Ras-MEK-ERK signals and decreased TCRα mRNA and surface TCR expression in Jurkat cells. However, loss of TCR expression takes several days in these cell line experiments. In agreement with these in vitro approaches, inducible deletion of Lat in vivo results in reduced TCRα mRNA- and surface TCR- expression in a delayed temporal manner as well. Lastly, we demonstrate that loss of basal LAT-RasGRP signals appears to lead to silencing or repression of TCRα transcription. We postulate that basal LAT-diacylglycerol-RasGRP signals fulfill a regulatory function in peripheral T lymphocytes by maintaining proper gene expression programs
    • 

    corecore