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ABSTRACT
Reservoir water fluctuation in supply and storage cycle have strong triggering effects on landslides 
on both sides of reservoir banks. Early identification of reservoir landslides and revealing the 
relationship between slope stability and the triggering factors including reservoir level and rainfall, 
are of great significance in further protecting nearby residents’ lives and properties. In this paper, 
based on the small baseline subset time series method (SBAS-InSAR), the potential landslides with 
active displacements in the river bank of Maoergai hydropower station in Heishui County from 
2018 to 2020 were monitored with Sentinel-1 data. As a result, a total of 20 unstable slopes were 
detected. Subsequently, it was found through a gray correlation analysis that the fluctuation of the 
reservoir water level is the main triggering factor for the displacement on unstable slopes. This 
paper applied wavelet tools to quantify the time lag between slope stability and reservoir water 
fluctuation, revealing that the displacement exhibits a seasonal trend, whose high-frequency signal 
displacement has an interannual period (1 year). Based on the Cross Wavelet Transform (XWT) 
analysis, under the interannual scale of one year, the reservoir water fluctuation and nonlinear 
displacement show a clear common power in wavelet. Additionally, a time lag of 65–120 days 
between slope stability and reservoir water fluctuations has been found, indicating that the non- 
linear displacements were behind the water level changes. Among the factors affecting the time 
lag, the elevation of the points and their distance to the bank shore show Pearson’s correlation 
coefficients of 0.69 and 0.70, respectively. The observed time lag and correlations could be related 
to the gradual saturation/drainage processes of the slope and the drainage path. This paper 
demonstrates the technical support to quantitatively reveal the time lag between slope stability 
and reservoir water fluctuation by InSAR and wavelet tools, providing strong support for the 
analysis of the mechanisms of landslides in Maoergai reservoir area.
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1. Introduction

The majority of reservoir landslides are distributed on 
high and steep slopes on both sides of reservoirs. These 
landslides are characterized by the difficulty to predict 
their displacement evolution, intensity, and sudden-
ness, to evaluate their destructive power, as well as to 
continuously monitor them (Dai et al. 2020; Lu et al.  
2019). Previous studies of reservoir bank landslides 
demonstrated that reservoir’s water storage and supply 
cycle cause important disturbances on bank stability, 
resulting in landslides (Shi et al. 2021). The most 
famous reservoir landslide is the Vajont landslide in 
Italy, which killed more than 2,000 people in 1963 
(Müller-Salzburg 1987). Although on a lesser scale, 

a large landslide occurred in Qianjiangping in 2003, in 
the Three Gorges during the reservoir impoundment, 
killing 24 people and causing major damage (Jian et al.  
2014). Other examples of reservoir landslides are the 
Huangtupo landslide at the Three Gorges, China 
(Wang, Li, and Du 2022), the Xingguang village land-
slide at the Xiluodu Reservoir, China (Zhu et al. 2022), 
the Punatsangchhu-I dam landslide, China (Dini et al.  
2020), the Ripponvale in the Clyde Dam reservoir, New 
Zealand (Macfarlane 2009) and the 1959 event at the 
Pontesei reservoir (Panizzo et al. 2005), among others. 
Rainfall is a very well-known landslide trigger in the 
Three Gorges at the same time (Liu et al. 2021; Kang 
et al. 2017). Therefore, to detect slopes instabilities in 

CONTACT Keren Dai daikeren17@cdut.edu.cn

GISCIENCE & REMOTE SENSING                         
2023, VOL. 60, NO. 1, 2170125 
https://doi.org/10.1080/15481603.2023.2170125

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-8989-3113
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2023.2170125&domain=pdf&date_stamp=2023-02-02


high mountain areas, to analyze the main influencing 
factors triggering reservoir bank landslides and to 
quantify the relationship between landslide displace-
ment and triggering factors are of paramount impor-
tance for: a) the study of landslide displacement 
changes; b) local disaster prevention and mitigation; 
c) triggering factors analysis and d) water conservancy 
and hydropower stations safety.

For monitoring landslide displacements on the 
reservoir banks, some traditional geodetic techniques 
are difficult to implement (e.g. total station) because 
of the treacherous terrain (Dun et al. 2021). Other 
techniques, as the use of optical images to identify 
landslides, present some advantages as for example 
a high resolution, although its use is constrained by 
the existence of clouds and fog on the area of interest 
(Feng et al. 2016). Furthermore, small displacements 
on landslides cannot be promptly identified and mon-
itored using optical images, which are not conducive 
to large-scale monitoring either (Zheng 2019). In com-
parison, Interferometric Synthetic Aperture Radar 
(InSAR) technology has been successfully used in var-
ious landslide studies. InSAR provides a day and night 
and all-weather imaging capability for measuring 
ground-surface displacements, has a strong penetra-
tion capability and a short revisiting time. Therefore, 
InSAR can be used not only for landslide displace-
ments monitoring and early warning (Kang et al.  
2017; Zhu et al. 2014; Dai et al. 2020; Sun et al. 2015; 
Dong et al. 2019; Hao et al. 2019) but also for identify-
ing large-scale potential landslides (Dai et al. 2020; 
Zhang et al. 2018; Liu et al. 2013; Zhang et al. 2018; 
Dun et al. 2021; Xu, Dong, and Li 2019; Zhang et al.  
2021). Consequently, InSAR has been widely used to 
detect reservoir bank landslides, determining their 
location, displacements information, landslide activity 
status, etc. (Dun et al. 2021; Liu et al. 2021; Zhou et al.  
2020; Tomás et al. 2016). Most of the studies about 
reservoir bank landslide displacement characteristics 
in the Three Gorges revealed that landslide move-
ments exhibit a clear seasonality (Liu et al. 2021).

In China, seasonal movements are highly correlated 
with rainfall (Hu et al. 2016; Zhao et al. 2012, 2018), 
especially with heavy rainfalls occurred every summer 
(Liu et al. 2021), and the time lag between peak rainfall 
and maximum landslide displacement is about 1–2  
months in some previous researches (Zhao et al. 2012,  
2018). On the other hand, reservoir water fluctuations 
are also an important factor, and there is also 

a correlation between reservoir water fluctuations and 
seasonal landslide signals (Liu et al. 2013; Michoud et al.  
2016). Slope displacement often occurs after water 
storage (Liu et al. 2021), and under different water 
storage conditions, these displacement signals exhibit 
different time lag and sensitivity to water fluctuations 
(Liu et al. 2013, 2021). Among the available studies, 
there are multiple qualitative analyses of the relation-
ship between slope instability and influencing factors 
(e.g. Zhou et al. 2020; Tomás et al. 2016; Reyes-Carmona 
et al. 2020, 2021). Complementarily, there are multiple 
methods, as the independent component analysis 
(ICA), the mean cross-correlation analysis (Chaussard 
and Farr 2019; Wang et al. 2021; Cohen-waeber et al.  
2018) and the wavelet tools (Tomás et al. 2016; Liu et al.  
2021; Kalia 2022), which are used as state-of-the-art 
effective quantitative approaches to explore the rela-
tionship between displacements and influence factors. 
The above-mentioned studies show that rainfall and 
water level fluctuation changes have a direct impact 
on landslide displacement and are important triggering 
factors for landslides. Therefore, it is of paramount 
importance to detect stability of the slopes in the 
reservoir area, to analyze the correlation between dis-
placement and water level fluctuation changes, to 
explore the relationship between unstable slopes in 
the reservoir bank area and the triggering factors, as 
well as quantify the hysteresis of the displacements.

This paper explores the use of the Small Baseline 
Subset InSAR (SBAS-InSAR) method to detect slope 
instabilities in the Maoergai reservoir area in Heishui 
County. Additionally, we perform a statistical correlation 
analysis between the detected active reservoir instabil-
ities and the triggering factors (i.e. the reservoir water 
level fluctuation and the rainfall). Finally, we conduct 
a quantitative analysis of the seasonality, periodicity, 
and the time lag between the displacement and the 
main triggering factors using continuous wavelet tools. 
This study provides key information to support the safe 
operation of local hydropower stations and a new 
insight into the study of landslide hysteresis in reservoir 
bank areas.

2. Study area and data

2.1 Overview of the study area

Heishui County is located in the central part of Aba 
Tibetan and Qiang Autonomous Prefecture in Sichuan 
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Province, east of the Qinghai-Tibet Plateau, with an 
average elevation of 3,544 m a.s.l. and height differ-
ences between 1,000 and 2,000 m. Heishui County 
presents a typical deep river valley geomorphology. 
Heishui County is characterized by a monsoonal pla-
teau-type climate, with annual dry and rainy seasons, 
and is one of the areas in Aba Prefecture with higher 
accumulated annual precipitations. The average 
annual rainfall of this area is 620.2 mm, with an 
uneven rainfall distribution mainly concentrated in 
summer.

The study area (purple triangle in Figure 1(a)) is 
crossed by the Heishui, Maoergai and Little Heshui 
rivers that are dammed by the Maoergai dam (red 
star in Figure 1(b)). The landform is characterized 
by deep valleys and high mountains strongly 
eroded and denudated that lead to steep slopes. 
This area is dominated by sandstone with unequal- 
thickness rhyolitic interbeds. These slopes are 
prone to slope instabilities and are highly condi-
tioned by the long-term erosion caused by the 
river (Yang et al. 2019). The reservoir impound-
ment started on 20 March 2011 (Guo, Xu, and 
Zhao 2015) until a stagnant and a normal water 
storage level of 2063 and 2133 m a.s.l. was 
reached, respectively. The reservoir capacity below 
the normal storage level is 535 million km3. During 
the rainy season, i.e. between May and October, 
the stagnant water level gradually rises until reach-
ing the normal water level, maintaining this level 
during September, December, and April of the 
next year for water supply (Baidu 2022). On 

30 September 2021, a large slope collapsed at the 
entrance of the Xiergou Tunnel in Heishui County 
(near Heishui River), causing serious damage to the 
nearby constructions and posing an important 
threat to the safety of the nearby roads and peo-
ple’s lives.

2.2 Dataset

Sentinel-1 satellites, operating in a sun-synchronous 
orbits with C-band, were launched by the European 
Space Agency (ESA) to provide continuous world-
wide SAR imageries. The Sentinel-1 data used in 
this work contain νν and νΗ multi-polarizations. 
A total number of 91 images in ascending orbit and 
87 images in descending orbit between 2018 and 
2020, spanning 3 years, were used in this study 
with νν polarization. Since the ascending orbit is 
more sensitive to east-facing slopes and the des-
cending orbit is more sensitive to west-facing slopes 
(Dai et al. 2022), the use of both ascending and 
descending images will considerably improve the 
capability to detect unstable slopes with different 
slope aspects. Based on Sentinel-1A images, this 
paper set a time baseline threshold of 36 days and 
a spatial baseline threshold of 5% (about 554 m in 
ascending orbit and 635 m in descending orbit), 
which enable the generation of 255 interferometric 
pairs in the ascending orbit and 241 interferometric 
pairs in the descending orbit (Figure 2).

Figure 1. (a) Overview of the study area; and (b) the reservoir area.
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3. Methodology

InSAR enables the detection and monitoring of slope 
displacements of reservoir banks on wide areas. The 
derived information can be used to qualitatively ana-
lyze the existing relationships between the measured 
displacements and the potential triggering factors 
based on time-series displacement results. However, 
these analyses often do not provide quantitative 
information about the existing relationships. 
Therefore, this paper quantitatively evaluates the 

primary and secondary relationships of the influen-
cing factors (i.e. reservoir water fluctuation and rain-
fall) on the slope displacements detected by SBAS- 
InSAR technology by means of the gray correlation 
analysis. Finally, wavelet tools are applied to quantita-
tively analyze the time–frequency relationships 
between the non-linear component of InSAR derived 
displacements of unstable slopes and the above- 
mentioned triggering factors (Figure 3). The main 
steps are shown below.

Figure 2. Spatial and temporal baseline diagrams of interferograms obtained from (a) ascending; and (b) descending images.
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Firstly, the multi-temporal SAR data covering the 
area of interest were acquired (Figure 3(a)). Then, the 
coregistration of the images was carried out before 
the filtering and noise reduction, and the processing 
was completed by the time-series SBAS-InSAR tech-
nology method (Figure 3(b)). Subsequently, the 
time-series of displacement of the study area based 
on interferometric pairs with high coherence points 
were obtained (Zhu, Li, and Hu 2017). According to 
the time series t0; t1 . . . tN a total of N + 1 SLC (Single 
Look Complex) images were obtained, and one of 
them was selected as the main image for the core-
gistration processing with the other images. 

Consequently, M interferometric pairs were gener-
ated by choosing the appropriate spatio-temporal 
baseline constraint thresholds, the M satisfies, 

N þ 1
2
� M �

N N þ 1ð Þ

2
(1) 

where N + 1 shows the number of images acquired.
Then, the orbital information and an external DEM 

from the shuttle radar topography mission (SRTM) 
with a resolution of 30 m were used to calculate 
terrain feature parameters, differentially process 
each interferometric pair, and remove flatland and 
topographic effects. The interferometric phase 

Figure 3. Proposed flow chart for the analysis of InSAR time series of the unstable slopes of Maoergai Reservoir.
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(Δφi x; yð Þ) of each multi-view differential interfero-
gram can be described as, 

Δφi x; yð Þ ¼ Δφdisp þ Δφtopo þ Δφatm þ Δφres (2) 

where Δφdisp is displacement phase along the LOS 
direction;Δφtopo is terrain phases; Δφatm is atmo-
spheric phase; and Δφres is noise phases.

Then, the Minimum Cost Flow (MCF) was used to 
complete the phase unwrapping (Costantini 1998). 
After eliminating the interferometric pairs contain-
ing phase errors and low coherence, stable ground 
control points (GCPs) were selected to estimate and 
remove the residual constant phase and the phase 
ramp that still existed after unwrapping, to estimate 
the displacement rate and the residual topography, 
as well as to perform the atmospheric filtering 
based on the obtained displacement rate to evalu-
ate and remove the atmospheric phase. Finally, the 
singular value decomposition (SVD) methods were 
used to obtain the final displacement rate (Zhou 
et al. 2017; Li et al., 2021), then the displacement 
rate results were geocoded based on the external 
DEM information.

Once the displacement results were obtained by 
InSAR, the response of the displacement results to the 
influencing factors was analyzed (Figure 3(c)). The 
gray correlation was then used to calculate the corre-
lation between the sequence of characteristic vari-
ables and the sequence of related factor variables. 
Furthermore, the order of each influencing factor 
was derived according to the principle of similarity 
in the geometry of the sequence curve used to deter-
mine the main influencing factor (Dai et al. 2016). 
First, the gray correlation index matrix, in which 
each index is dimensionless, was constructed using 
methods such as initialization and mean-valorization 
to normalize the values of each index to around 1. 
Among them, the mean-valorization is more consis-
tent with the characteristics of the time series of the 
landslide displacement and its influencing factors (Dai 
et al. 2016). The maximum and minimum values of the 
absolute difference between the indicator sequence 
and the reference sequence can be expressed as 
(Dong and Xie 2016), 

MIN ¼ minn
i¼1minm

j¼1 yij � ykj
�
�

�
� (3) 

MAX ¼ maxn
i¼1maxm

j¼1 yij � ykj
�
�

�
� (4) 

where i shows the quantity of influencing factors, j 
is the quantity of hours, yij is the reference sequence, 
ykj is dimensionless matrix;

The gray correlation coefficient matrix can be 
expressed as follows according to the maximum and 
minimum values described above, 

�ij
� �

s�m ¼
MIN þMAX

yij � ykj
�
�

�
�þ η�MAX

(5) 

where η is resolution coefficient. In order to increase 
the significance of the differences between the corre-
lation coefficients (Dai et al. 2016), generally η = 0.5. 
The gray correlation is based on the degree of simi-
larity or dissimilarity of the trends between factors to 
determine the correlation. The correlation between 
the sequences of influencing factors is expressed as 
the average of the correlation coefficients at each 
moment, and the primary and secondary influencing 
factors are determined according to the size of the 
average. These formulas are suitable for dynamic ana-
lysis in this study. In this paper, the quantity of influ-
encing is three, the quantity of hours is 12, and the 
monthly cumulative displacements will be used as the 
reference sequence. The monthly average reservoir 
levels, and monthly average rainfall will be used as 
the comparability sequence. The sequences men-
tioned above are mean-valorization. The purpose of 
η is to improve the variability between the correlation 
coefficients and is generally taken empirically (Dai 
et al. 2016).

To analyze the relationship between unstable 
slope displacements and the main triggering factor, 
wavelet analysis can be used to reveal the time- 
frequency features of signals extracted in various 
time scales, which is a common time-frequency ana-
lysis method (Liu et al. 2021). This paper used the 
Continuous Wavelet Transform (CWT) and Cross 
Wavelet Transform (XWT) (Figure 3(d)). Before per-
forming the wavelet analysis, the two time series 
data must be in equal intervals of time, and then 
interpolation is required if they are not uniform. The 
time series of the main correlation factor should also 
be uniformly sampled simultaneously, making the 
time interval consistent with the InSAR time series 
results (Figure 3(d)). Wavelet analysis (i.e. CWT, XWT) 
enables the identification of the periodic displace-
ments described by the non-linear terms of the 
InSAR time as well as their relationship with the trig-
gering factors (Tomás et al. 2016). Hence, the InSAR 
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time series requires a decomposition of the original 
InSAR time series, where the linear term is calculated 
by a linear least-square fit and the nonlinear term is 
assessed as the difference between the displacement 
time series and the previously calculated linear com-
ponent (Liu et al. 2021) (Figure 3(d)). Consequently, 
wavelet analysis was carried out using a non-linear 
trend term of the InSAR displacements and the main 
factors after resampling.

A wavelet is a function, which is limited in both 
frequency and time with zero average (Grinsted, 
Moore, and Jevrejeva 2004). The result can be repre-
sented as a two-dimensional image over time and 
frequency and are used to extract the characteristics 
of the time series. The continuous wavelet transform 
(CWT) can be thought of as a bandpass filter with 
different positions and widths (Grinsted, Moore, and 
Jevrejeva 2004; Vallet et al. 2016; Torrence and 
Compo 1998), which is expressed as, 

Wx a; bð Þ ¼ ò
1

� 1
x tð Þψ�a;b tð Þdt (6) 

Where,a; b∈R; a≠0, x tð Þ is the time series variable, ψ�

is the complex conjugation of ψ, a is the scaling factor, 
and b is the translation factor. In this work, we used 

Morlet wavelet that is described as ψ tð Þ ¼ e
� t2

2 eiωt , 
where ω is the dimensionless frequency (ω = 6 can 
balance time and frequency localization well), and t 
is the dimensionless time (Grinsted, Moore, and 
Jevrejeva 2004).

CWT is suitable for time series of limited length, 
and there may be edge pseudo-effects on the wavelet 
power spectrum (or scale plot). The edge pseudo- 
effects will lead to the definition of a cone of influence 
(COI) in the region where such effects are significant. 
Besides, the 5% significance level of wavelet power 
against red noise is shown as a coarse contour on the 
scale plot. Only patches identified within the thick 
contours of the COI region can be reliably interpreted 
(Vallet et al. 2016).

Complementarily, cross wavelet transform (XWT) 
has been used to identify relationships between com-
mon signals of two time series. XWT is the convolu-
tion product of the CWT of two time-series. It shows 
regions with high common power values and its 
phase represents the time difference between both 
time-series x tð Þ and y tð Þ. It can be described as 
(Tomás et al. 2016; Liu et al. 2011), 

Wxy a; bð Þ ¼ Wx a; bð ÞW�y a; bð Þ (7) 

where W�y is the complex conjugation of Wy and Wxj j
2 

is the power of the crossed wavelets. Two signals are 
identical in time when the arrows face right showing 
that they are in phase at 0°; when both time-series are 
inverted the arrows face left indicating that they are in 
opposite phase at 180°.

The temporal delay or time lag (Δt) can be calcu-
lated as (Tomás et al. 2020), 

Δt ¼
Δφ� T

2π
(8) 

where Δφ is the arrow angle in radians and T is the 
periodicity or wave period of interest. Finally, the 
correlation of the relevant influencing factors was 
analyzed after calculating the hysteresis of each 
unstable slope detected by InSAR.

4. Results

4.1 Slope with displacements

Based on the SBAS-InSAR technique described in sec-
tion 3, a total of 20 unstable slopes (MEG01–13 are 
from ascending orbiting results and MEG14–20 are 
from descending orbiting results) partially submerged 
beneath the waters of the reservoir were successfully 
detected in the Maoergai reservoir, (Figure 4) (named 
MEG01–20, respectively, where MEG is an abbrevia-
tion for Maoergai). MEG02, MEG04, MEG05, and 
MEG09 are the known landslide points in 
Figure 1(b). It should be noted that yellow and red 
PS (points) represent significant movements away 
from the satellite’s line of sight, green PS represent 
the stable areas.

Geometric distortion includes foreshortening, lay-
over, and shadow. Large areas of foreshortening and 
layover can diminish the visual quality and make 
interpretation difficult or unreliable, while shadow 
can render the effective information absolutely inva-
lid and make interpretation impossible. Therefore, the 
detection results should be as far away from the geo-
metric distortion areas as possible. In Figure 4(c),(d) 
and Figure 5, the unstable slopes detected by the 
ascending and descending orbits are located in the 
suitable observation area, which basically is not 
affected by geometric distortion, and, consequently, 
does not affect the interpretation. None of the 
unstable slopes analyzed are in the regions of 

GISCIENCE & REMOTE SENSING 7



geometric distortion, ensuring the reliability of the 
InSAR monitoring results. The average annual displa-
cement velocity is up to −112 mm/y and up to −96  
mm/y for the ascending and descending datasets, 
respectively. The 20 unstable slopes detected are 
shown in Figure 5. It is worth noting that the slopes 
detected on the ascending orbit are all east-facing 
(MEG01-MEG13), while those detected on the des-
cending orbit are all west-facing (MEG14-MEG20) 
(Figure 5). The detected unstable slopes are close to 
the reservoir, providing a good coverage and a high 
coherence.

It should be worth mentioning that the side-view 
imaging of the radar system has influence on the 
acquisition of the accurate real-3D displacements. The 
sensitivity between LOS displacement and slope real 
displacement is different and is affected by the inci-
dence angle, the slope gradients and the slope aspects 
among other factors (Dai et al. 2022). In this study, we 
used ascending and descending data to overcome 
these drawbacks to some degree regarding on the 
active slope detection. However, it should be admitted 
that the LOS displacement acquired in this study are 
not identical to the real slope displacements. Therefore, 

Figure 4. (a) SBAS-InSAR displacement rate results of the Maoergai reservoir in ascending orbiting; (b)sbas-InSAR displacement rate 
results of the Maoergai reservoir in descending orbiting; (c) Geometric distortion of the ascending orbiting; (d) Geometric distortion of 
the descending orbiting.
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their scale factor (system error) would not influence the 
subsequent correlation analysis between displace-
ments and controlling factors.

Figure 6 shows the time series of the instabilities 
MEG06 and MEG13 from the ascending dataset and of 
MEG15 and MEG19 from the descending dataset. 
Three PS (P1, P2 and P3, where P1, P2 and P3 exhibit 
the lower, medium, and higher values of velocity, 
respectively) exhibiting different displacement rates 
have been selected on every slope to plot the time- 
series displacement curves. As can be observed the 
reservoir unstable slopes exhibit a clear seasonal dis-
placement behavior, showing an obvious cyclical 
downward trend, with a “step-like” characteristic, 
and the other unstable slopes have similar trend 
because of the seasonal rainfall and reservoir water 

level cycles. Furthermore, it can be seen that all the 
slopes show an accelerated displacement from 
December to August every year, which enables to 
qualitatively state that the unstable slopes present 
a seasonal periodicity.

4.2 Main influencing factor analysis

In order to know the relationships between the dis-
placements of the unstable slopes of Maoergai reser-
voir in Heishui County and its two influencing factors 
(i.e. rainfall and reservoir water level), 1300 points 
placed in the unstable slopes of the reservoir bank 
around the reservoir were selected. The annual aver-
age displacement velocity of these points in the 
ascending orbit is greater than 30 mm/y. Then, the 

Figure 5. Average displacement rate of unstable slopes (MEG01–13 detected in the ascending data and MEG14–20 detected in the 
descending data).
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calculated monthly average cumulative displace-
ments, monthly average reservoir levels, and monthly 

average rainfall of the 3 years are used as the base 
data (Figure 7).

Figure 6. Time series displacement curves of landslides (a) MEG06; (b) MEG13; (c) MEG15; and (d) MEG19.

Figure 7. Yearly relationship between cumulative displacements and influence factors.
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The previous data were then used to construct 
a matrix of gray correlation indicators X= x1; x2; x3½ � ¼

[monthly cumulative displacements, monthly rainfall, 
monthly reservoir water level], and to calculate the 
correlation coefficient matrix according to Equation 
(3-5). Calculating the mean value of correlation coeffi-
cient at each time, the correlation degree of correlation 
factor variable sequences x2 and x3 relative to the 
reference sequence x1 is r = (0.5287, 0.8034) 
(Figure 8). Figure 8 shows the order of the influencing 
factors on the cumulative displacement of the unstable 
slopes in Heishui reservoir bank. Monthly reservoir 
water level mostly shows higher values than monthly 
rainfall. The response of unstable slope displacements 
to monthly reservoir water fluctuations, far exceeds 
that of rainfall, and its correlation is 0.8034. Therefore, 
we can conclude that the reservoir water fluctuations 
are the prime influencing factor controlling the activity 
of the slopes.

5. Discussion

5.1 The time lag between the displacements and 
the reservoir water fluctuations

To detect the time–frequency relationships between 
the reservoir water level and the displacement non-
linear trend of the displacements of the unstable 
slopes, we used wavelet analysis to decompose the 

nonlinear trend term from the displacement results 
detected in subsection 4.1 as one time series and the 
reservoir water fluctuation as another time series. 
Both time series were independently used to calculate 
the CWT.

Figure 9(a) depicts the reservoir water level infor-
mation after sampling and interpolation. The figure 
shows that there is a clear seasonal variation and 
interannual cycle between July and December 
every year. Figure 9(b)-(f) represent the CWT results 
for points MEG02, MEG09, MEG13, MEG15, and 
MEG18, respectively, with peak signals with a period 
of 24–48 days in July 2018 (Figure 9(c),(d),(f)), 
August 2019 (Figure 9(b),(d)), and around 
August 2020 (Figure 9(b)-(f)). Additionally, a strong 
power is detected during the whole time series for 
a period of 365 days (i.e. 1 year) that corresponds to 
the interannual variations of the reservoir water level 
(Figure 9(b)-(f)). Among all the identified unstable 
slopes, partial power signals were identified within 
the August 2018, August 2019 and August 2020, 
respectively, at the same time the highest reservoir 
water level were reached in July–December period. 
This fact indicates a partial response of nonlinear 
displacements of the unstable slopes to reservoir 
level changes, showing interannual cycles of about 
360 days.

In order to evaluate the time lag between the over-
all displacement signal of the reservoir bank and the 

Figure 8. Correlation between cumulative displacements and influencing factors derived from gray correlation analysis.
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main triggering factor (i.e. the reservoir water level), 
the non-linear displacement term from one represen-
tative point located in the strongest deformed zone of 
every unstable slope was selected. Then, XWT was 
used to identify the common power between both 
time series. It is worth noting that XWT requires two 
time-series uniformly sampled, which requires the 
reservoir water level data corresponding to the 
ascending/descending orbiting dates.

Figure 10 shows that the arrows are mainly facing 
down during the 1-year period of significant common 
power, indicating that the reservoir water fluctuations 
are ahead of the nonlinear displacements. This fact 
indicates that the non-linear displacements exhibit 
a time lag response to the reservoir water fluctua-
tions. To quantify the time lag on interannual struc-
ture, we can calculate the specific number of days 
according to Equation 8. Among the analyzed slopes, 
MEG02 indicates a time lag about 118 days (arrows in 
the COI cone and spectral band face downward about 
117° to the right, Figure 10(b)) during the 1-year 
period of significant common power.; MEG09 and 
MEG13 have a time lag about 102 days (arrows face 
downward 102°, Figure 10(i), Figure 10(m)); MEG15 
and MEG18 both have arrows facing downward 70– 
75° to the right, with a time lag about 70–75 days 

(Figures 10(o), 10(r)). The average temporal delay for 
the interannual cycle is 99.36 days.

Figure 10 confirms that the reservoir level and the 
nonlinear displacements time series exhibit a clear 
high common power over a 365-day (1-year) cycle 
throughout the study period (2018–2020). 
Additionally, a few inter-subannual common power 
signals of 72–120 days and 24–48 days in August 2019 
and August 2020 are highlighted, but they are irregu-
larly connected in scale and time. However, the 
appearance of these structures matches the timing 
of the high reservoir water level.

Therefore, since the XWT result shows a continuous 
structure at 1-year period, showing higher power and 
significant consistency in the annual cycle, only the 
time lag on the interannual cycle is relatively reliable. 
In summary, Figure 10 suggests that the nonlinear 
displacement terms of the 20 unstable slopes have 
an extremely strong correlation with the reservoir 
level in the interannual cycle. The arrows in 
Figure 10 mainly face in the range of 65–120°, indicat-
ing that the time series results of the nonlinear dis-
placement trends of the unstable slopes on the banks 
of the Maoergai present a certain time lag with 
respect to the reservoir-level fluctuations, which is 
65–120 days.

Figure 9. (a) Reservoir water level time series after resampling; (b) CWT of MEG02; (c) CWT of MEG09; (d) CWT of MEG13; (e) CWT of 
MEG15; (f) CWT of MEG18. 5% significance level relative to red noise is shown as a coarse contour. The wavelets are not fully localized 
in time and there may be edge pseudo-effects out of the cone of influence (COI).
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5.2 Factors influencing the time lag

Based on the time lag for each slope, four factors (i.e. 
elevation of the point, displacement rate of the point, 
distance of the point along the river to the dam, and 
distance of the point to the shore) that may affect the 
length of the time lag period were selected to be 
analyzed. To this aim, the time lag was plotted against 
the four factors, and the Pearson’s correlation coeffi-
cient was used as a quality indicator for illustrating 
(Figure 11(b)) the above-mentioned relationships. The 
Pearson’s correlation coefficients between the time 

lag and the elevation of the point, the displacement 
rate of the point, the distance of the point along the 
river to the dam, and the distance of the point to the 
shore are 0.69, −0.23, 0.09, and 0.70, respectively 
(Figure 11(b)). The results show that among these 
influencing factors, the elevation of the point and 
the distance of the point from the shore have 
a relatively high correlation with the time lag. In the 
other two cases, in which the correlation coefficients 
are low, indicating that it is unreliable to extrapolate 
the displacement time lag from the displacement rate 

Figure 10. Results from cross-wavelet transform (XWT) for the reservoir non-linear displacements with reservoir water level. The black 
line separates ascending orbiting results (above) from descending orbiting results (below). 5% significance level relative to red noise is 
shown as a coarse contour. The wavelets are not fully localized in time and there may be edge pseudo-effects out of the cone of 
influence (COI).
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of the point (i.e. the velocity) or the distance of the 
point measured along the river to the dam.

5.3 Reasons analysis of the time lag

The obtained results above can be explained as fol-
lows. The slope gradually rises its groundwater level 
during the impoundment period saturating the slope 
and increasing the hydrostatic thrust on the slope 
surface (Figure 12(b)). The saturation of the slope 
leads to an increase of the pore water pressure that 
reduces the effective stress on the soil and the shear 
strength on the sliding surface. At the same time, the 
rise of the reservoir water level increases the hydro-
static thrust, which improves the stability of the slope. 
In contrast, during reservoir water level drawdown 
periods, the groundwater level within the slope 
drops and the hydrostatic thrust reduces 
(Figure 12(c)) (Tomás et al. 2016; Zhou et al. 2016). 
The combination of both effects (i.e. hydrostatic 
thrust and slope saturation) mainly control the activ-
ity and displacements of the slope. According to 
Figure 7, when the normal reservoir water level is 
reached, the slopes exhibit a higher stability (i.e. 
lower displacements) and vice versa. The hydrostatic 
thrust acts immediately over the slope after any reser-
voir water level change. However, the saturation of 
the slope develops gradually over time since it 
strongly relies on the permeability of the soil of the 
slope and the draining path (Figure 12(b) and (c)). This 
delay between the reservoir impoundment/ 

drawdown and the gradual saturation of the slope 
could explain the observed delay existing between 
the reservoir water level and the non-linear compo-
nent of the displacements that are related to the pore 
water changes (Figure 12(a)). This explanation is also 
in agreement with the correlations obtained between 
the time lag, and the elevation and the distance to the 
bank river, since the higher the elevation and the 
distance to the riverbank, the longer the saturating/ 
draining path during the saturation/drainage periods. 
Furthermore, the non-linear displacements are prob-
ably related to consolidation – expansion cycles 
induced by pore pressure reduction-increase caused 
by groundwater changes induced by the reservoir 
water level rise-drawdown (Jiang et al. 2011; Tomás 
et al. 2014). Consequently, the studied slopes present 
a continuous displacement (linear component) with 
minor non-linear cyclic superimposed displacements 
controlled by the reservoir water level variations.

6. Conclusion

Sentinel-1 SAR data covering the period 2018–2020 
have been used to detect slope stabilities along the 
Maoergai reservoir in Heishui County by means of 
SBAS-InSAR technology. A total of 20 unstable slopes 
(MEG01–13 are from ascending orbiting results and 
MEG14–20 are from descending orbiting results) were 
successfully detected. Monthly precipitations and 
monthly reservoir water level time series from 2018 
to 2020 were also used to find the main influencing 

Figure 11. (A) Interannual cycle time lag distribution; (b) time lag and influence factors correlation. The grey dotted lines correspond 
to the fitted line of each scattered point.
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factor on the activity of Maoergai reservoir banks. The 
results derived from gray analysis showed that the 
influence of reservoir water fluctuation on the slopes 
was much higher than that of rainfall. Furthermore, 

wavelet analyses were applied to identify seasonal-
ities by means CWT in the time series, as well to 
quantify the relationships between the nonlinear dis-
placement trend terms obtained by SBAS-InSAR and 

Figure 12. Conceptual interpretation of the non-linear displacements. a) Time series relationship; b) Impoundment period; c) 
Drawdown period.
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the main triggering factor (i.e. the reservoir water 
level) through the XWT. The results of CWT showed 
that: a) a partial strong power can be identified 
throughout the entire analyzed period, indicating 
that there exist seasonal patterns of unstable slopes 
nonlinear displacements; b) all nonlinear displace-
ments exhibit an interannual cycle (360 days).

Complementarily, the results of XWT demonstrated 
that: a) the reservoir water level and the non-linear 
displacements have a high common power in the 
interannual cycle (1 year): b) the non-linear displace-
ment changes exhibit a time lag with the reservoir 
water fluctuations of about 65–120 days; c) the length 
of the time lag is related to the point elevation and 
the distance from the point to the shore of the bank. 
The observed delays can be related to the non-linear 
displacements caused by pore pressure variations due 
to the gradual saturation/desaturation process of the 
slopes and the increase/reduction of the hydrostatic 
thrust on the submerged part of the landslide after 
each impoundment/drawdown period, respectively. 
This study highlights the importance of a close mon-
itoring of the stability of the reservoir bank slopes 
considering the periodic and hysteresis characteristics 
of each slope, jointly with an analysis of triggering 
factors to ensure the operational safety of the reser-
voir. The method in this study based on the InSAR 
observations and wavelet tools could be generaliza-
tion and universal for the time lag analysis in any 
other reservoir cases. It should be noted that in this 
study area the unstable slopes are located in 
a relatively single stratigraphic property (i.e. T3zh). 
Different stratigraphic properties should be taken 
into account when the stratum is more complex in 
some cases to ensure the precision of the conclusion.
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