78 research outputs found
In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine
YesBackground: Discovery of novel gametocytocidal molecules is a major pharmacological strategy in the elimination
and eradication of malaria. The high patronage of the aqueous root extract of the popular West African anti-malarial
plant Cryptolepis sanguinolenta (Periplocaceae) in traditional and hospital settings in Ghana has directed this study
investigating the gametocytocidal activity of the plant and its major alkaloid, cryptolepine. This study also investigates
the anti-malarial interaction of cryptolepine with standard anti-malarials, as the search for new anti-malarial combinations
continues.
Methods: The resazurin-based assay was employed in evaluating the gametocytocidal properties of C. sanguinolenta
and cryptolepine against the late stage (IV/V) gametocytes of Plasmodium falciparum (NF54). A fixed ratio method
based on the SYBR Green I fluorescence-based assay was used to build isobolograms from a combination of cryptolepine
with four standard anti-malarial drugs in vitro using the chloroquine sensitive strain 3D7.
Results: Cryptolepis sanguinolenta (
IC50 = 49.65 nM) and its major alkaloid, cryptolepine (
IC50 = 1965 nM), showed
high inhibitory activity against the late stage gametocytes of P. falciparum (NF54). In the interaction assays in asexual
stage, cryptolepine showed an additive effect with both lumefantrine and chloroquine with mean ΣFIC50s of
1.017 ± 0.06 and 1.465 ± 0.17, respectively. Cryptolepine combination with amodiaquine at therapeutically relevant
concentration ratios showed a synergistic effect (mean ΣFIC50 = 0.287 ± 0.10) whereas an antagonistic activity (mean
ΣFIC50 = 4.182 ± 0.99) was seen with mefloquine.
Conclusions: The findings of this study shed light on the high gametocytocidal properties of C. sanguinolenta and
cryptolepine attributing their potent anti-malarial activity mainly to their effect on both the sexual and asexual stages
of the parasite. Amodiaquine is a potential drug partner for cryptolepine in the development of novel fixed dose
combinations
Natural products as starting points for future anti-malarial therapies: going back to our roots?
Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already used by the community. This first step forms a solid basis of observations, before moving to in vivo pharmacological characterization and ultimately identifying the active ingredient. A large part of the population uses herbal medicinal products despite limited numbers of well-controlled clinical studies. Increased awareness by the regulators and public health bodies of the need for safety information on herbal medicinal products also lends support to obtaining more clinical data on such products. Conclusions The relative paucity of new herbal medicinal product scaffolds active against malaria results discovered in recent years suggest it is time to re-evaluate the ‘smash and grab’ approach of randomly testing purified natural products and replace it with a patient-data led approach. This will require a change of perspective form many in the field. It will require an investment in standardisation in several areas, including: the ethnopharmacology and design and reporting of clinical observation studies, systems for characterizing anti-malarial activity of patient plasma samples ex vivo followed by chemical and pharmacological characterisation of extracts from promising sources. Such work falls outside of the core mandate of the product development partnerships, such as MMV, and so will require additional support. This call is timely, given the strong interest from researchers in disease endemic countries to support the research arm of a malaria eradication agenda. Para-national institutions such as the African Network for Drugs and Diagnostics Innovation (ANDi) will play a major role in facilitating the development of their natural products patrimony and possibly clinical best practice to bring forward new therapeutics. As in the past, with quinine, lapinone and artemisinin, once the activity of herbal medicinal products in humans is characterised, it can be used to identify new molecular scaffolds which will form the basis of the next generation of anti-malarial therapies.</p
The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites
Michael Delves and colleagues compare the activity of 50 current and experimental antimalarials against liver, sexual blood, and mosquito stages of selected human and nonhuman parasite species, including Plasmodium falciparum, Plasmodium berghei, and Plasmodium yoelii
Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation
<p>Abstract</p> <p>Background</p> <p>Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.</p> <p>Methods</p> <p>A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and <it>de novo </it>molecular design.</p> <p>Results</p> <p>Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified <it>in silico </it>and tested <it>in vitro</it>; eight of them showed anti-malarial activity (IC50 ≤ 10 μM), with six being very effective (IC50 ≤ 1 μM), and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the most active compound.</p> <p>Conclusions</p> <p>Gradient's metric modelling approach and electron-density molecular representations can be powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are agnostic of the particular biological target, the technology can account for different mechanisms of action and be used for <it>de novo </it>design of small molecules with activity against not only the asexual phase of the malaria parasite, but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.</p
Elimination Therapy for the Endemic Malarias
Most malaria diagnosed outside endemic zones occurs in patients experiencing the consequences of what was likely a single infectious bite by an anopheline mosquito. A single species of parasite is nearly always involved and expert opinion on malaria chemotherapy uniformly prescribes species- and stage-specific treatments. However the vast majority of people experiencing malaria, those resident in endemic zones, do so repeatedly and very often with the involvement of two or more species and stages of parasite. Silent forms of these infections—asymptomatic and beyond the reach of diagnostics—may accumulate to form substantial and unchallenged reservoirs of infection. In such settings treating only the species and stage of malaria revealed by diagnosis and not others may not be sensible or appropriate. Developing therapeutic strategies that address all species and stages independently of diagnostic evidence may substantially improve the effectiveness of the control and elimination of endemic malaria
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activityAntimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.The authors thank T.T. Diagana (Novartis Institute for Tropical Diseases, Singapore) for provision of the compounds, the Red Cross (Australia and the USA) for the provision of human blood for cell cultures, and G. Stevenson for assistance with the triaging of compounds following screening. The authors acknowledge the Bill and Melinda Gates Foundation (grant OPP1040399 to D.A.F. and V.M.A. and grant OPP1054480 to E.A.W. and D.A.F.), the National Institutes of Health (grant R01 AI103058 to E.A.W. and D.A.F., grant R01 AI50234 to D.A.F, and R01 AI110329 to T.J.E.), the Australian Research Council (LP120200557 to V.M.A.) and the Medicines for Malaria Venture for their continued support. P.E.F. and M.I.V. are supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).info:eu-repo/semantics/publishedVersio
New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum
Background:
The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs.
Methods:
A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay.
Results:
The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3–71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration.
Conclusion:
The investigated, trioxolane–tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.info:eu-repo/semantics/publishedVersio
malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination
- …