1,000 research outputs found

    Mode-matching analysis of a shielded rectangular dielectric-rod waveguide

    Get PDF
    Rectangular cross-section dielectric waveguides are widely used at millimeter wavelengths. In addition, shielded dielectric resonators having a square cross-section are often used as filter elements, however there is almost no information available on the effect of the shield. Rectangular or square dielectric waveguide is notoriously difficult to analyze, because of the singular behaviour of the fields at the corners. Most published analyses are for materials with a low dielectric constant, and do not include the effects of a shield. This paper describes a numerically efficient mode matching method for the analysis of shielded dielectric rod waveguide, which is applicable to both low and high dielectric constant materials. The effect of the shield on the propagation behaviour is studied. The shield dimensions may be selected such that the shield has a negligible effect, so that results can be compared with free space data. The results are verified by comparison with several sets of published data, and have been confirmed by measurement for a nominal 'e' r of 37.4

    Liver ‘organ on a chip’

    Get PDF
    © 2017 The liver plays critical roles in both homeostasis and pathology. It is the major site of drug metabolism in the body and, as such, a common target for drug-induced toxicity and is susceptible to a wide range of diseases. In contrast to other solid organs, the liver possesses the unique ability to regenerate. The physiological importance and plasticity of this organ make it a crucial system of study to better understand human physiology, disease, and response to exogenous compounds. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems. Keywords: Microphysiologic systems; Organoids; 3D culture systemsNational Institutes of Health (U.S.) (Grant UH3TR000496)National Institutes of Health (U.S.) (Grant UH3TR000503

    Ionic high-pressure form of elemental boron

    Full text link
    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.Comment: Published in Nature 453, 863-867 (2009

    From cheek swabs to consensus sequences : an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    Get PDF
    Background: Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results: Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions: All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources

    Time-sculptures of Terrifying Ambiguity: Staging Inner Space and Migrating Realities in Analogue's Living Film Set

    Get PDF
    This article examines Analogue’s Living Film Set, an interactive theatre piece which uses miniature film sets, multi-touch surface technology and live video feeds to reframe my semi-remembered memories from the mid-1980s as a collective participatory experience. Drawing on new wave novelist J. G. Ballard’s notion of childhood memory as ‘time-sculptures of terrifying ambiguity’ [Ballard, J. G. 1963. “Time, Memory and Inner Space.” J. G. Ballard website (originally published in The Woman Journalist Magazine). Accessed August 6, 2015. http://www.jgballard.ca/non_fiction/jgb_time_memory_innerspace.html], I will demonstrate how my childhood town of Shepperton has been overwritten in both Ballardian literary fiction and the incursion of cinematic artifice from the neighbouring activities of Shepperton Film Studios. I argue that the ambiguity of my recollections and the contamination of my lived history with ‘prosthetic memories’ [Landsberg, Alison. 2004. Prosthetic Memory: The Transformation of American Remembrance in the Age of Mass Culture. New York, NY: Columbia UP, 20–21.] has provided a creative space to re-enact the blended hyperreality of my early childhood through the work’s intermedial form. I will conclude by examining how the shifting reality status of the media used within the performance intersects with the notion of ‘time-sculptures’ and problematises what Carol Martin [(2013). Theatre of the Real. Basingstoke: Palgrave Macmillan.] has identified as ‘theatre of the real’

    Calorimetric Investigation of Copper Binding in the N-Terminal Region of the Prion Protein at Low Copper Loading: Evidence for an Entropically Favorable First Binding Event

    Get PDF
    Although the Cu<sup>2+</sup>-binding sites of the prion protein have been well studied when the protein is fully saturated by Cu<sup>2+</sup>, the Cu<sup>2+</sup>-loading mechanism is just beginning to come into view. Because the Cu<sup>2+</sup>-binding modes at low and intermediate Cu<sup>2+</sup> occupancy necessarily represent the highest-affinity binding modes, these are very likely populated under physiological conditions, and it is thus essential to characterize them in order to understand better the biological function of copper–prion interactions. Besides binding-affinity data, almost no other thermodynamic parameters (e.g., Δ<i>H</i> and Δ<i>S</i>) have been measured, thus leaving undetermined the enthalpic and entropic factors that govern the free energy of Cu<sup>2+</sup> binding to the prion protein. In this study, isothermal titration calorimetry (ITC) was used to quantify the thermodynamic parameters (<i>K</i>, Δ<i>G</i>, Δ<i>H</i>, and <i>T</i>Δ<i>S</i>) of Cu<sup>2+</sup> binding to a peptide, PrP­(23–28, 57–98), that encompasses the majority of the residues implicated in Cu<sup>2+</sup> binding by full-length PrP. Use of the buffer <i>N</i>-(2-acetomido)-aminoethanesulfonic acid (ACES), which is also a well-characterized Cu<sup>2+</sup> chelator, allowed for the isolation of the two highest affinity binding events. Circular dichroism spectroscopy was used to characterize the different binding modes as a function of added Cu<sup>2+</sup>. The <i>K</i><sub>d</sub> values determined by ITC, 7 and 380 nM, are well in line with those reported by others. The first binding event benefits significantly from a positive entropy, whereas the second binding event is enthalpically driven. The thermodynamic values associated with Cu<sup>2+</sup> binding by the Aβ peptide, which is implicated in Alzheimer’s disease, bear striking parallels to those found here for the prion protein

    Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Get PDF
    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species
    corecore