182 research outputs found

    Gender equity at scientific events

    Get PDF
    International audienceAlthough the proportion of women in science, and in evolutionary biology in particular, has substantially increased over the last century, women remain underrepresented in academia, especially at senior levels. In addition, their scientific achievements do not always receive the same level of recognition as do men’s, which can be reflected in a lower relative representation of women among invited speakers at conferences or specialized courses. Using announcements sent to the EvolDir mailing list between April 2016 and September 2017, and the symposium programs of three large evolutionary biology congresses held in summer 2017, we quantified the representation of women announced as invited speakers in conferences, congress symposia, and specialized courses. We compared the proportion of invited women to a baseline estimated using membership data of the associated scientific societies, and surveyed organizers to investigate their influence and that of potential gender-ratio guidelines on the proportion of invited women. We find that the average proportion of invited women is comparable (conferences), significantly lower (specialized courses), or significantly higher (congress symposia) than the current baseline (32% women). It is positively correlated to the proportion of women among the organizers, and it is on average higher for events whose organizers considered gender when choosing speakers than for those whose organizers did not. To investigate the impact of Equal Opportunity guidelines, we then collected longitudinal data on the proportion of invited women at two series of congresses, covering the 2001–2017 period. The proportion of invited women is higher when Equal Opportunity guidelines are announced. Encouraging women to sit on organizing committees of scientific events, and the establishment of visible Equal Opportunity guidelines, thus could be ways to ensure higher number of invited female speakers in the future. Our results suggest that change, if desired, requires deliberate actions

    Harnessing the Power of Genomics to Secure the Future of Seafood

    Get PDF
    Best use of scientific knowledge is required to maintain the fundamental role of seafood in human nutrition. While it is acknowledged that genomic-based methods allow the collection of powerful data, their value to inform fisheries management, aquaculture, and biosecurity applications remains underestimated. We review genomic applications of relevance to the sustainable management of seafood resources, illustrate the benefits of, and identify barriers to their integration. We conclude that the value of genomic information towards securing the future of seafood does not need to be further demonstrated. Instead, we need immediate efforts to remove structural roadblocks and focus on ways that support integration of genomic-informed methods into management and production practices. We propose solutions to pave the way forward.Peer reviewe

    A metabarcoding analysis of the wrackbed microbiome indicates a phylogeographic break along the North Sea–Baltic Sea transition zone

    Get PDF
    Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community

    The Maia detector array and x-ray fluorescence imaging system: Locating rare precious metal phases in complex samples

    Get PDF
    X-ray fluorescence images acquired using the Maia large solid-angle detector array and integrated real-time processor on the X-ray Fluorescence Microscopy (XFM) beamline at the Australian Synchrotron capture fine detail in complex natural samples with images beyond 100M pixels. Quantitative methods permit real-time display of deconvoluted element images and for the acquisition of large area XFM images and 3D datasets for fluorescence tomography and chemical state (XANES) imaging. This paper outlines the Maia system and analytical methods and describes the use of the large detector array, with a wide range of X-ray take-off angles, to provide sensitivity to the depth of features, which is used to provide an imaging depth contrast and to determine the depth of rare precious metal particles in complex geological samples. © 2013 SPIE

    Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly

    Get PDF
    Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i) Is the population structure affected by longitudinal or latitudinal gradients?; (ii) Do geographic boundaries limit gene flow?; (iii) Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv) Is there evidence of a recent range expansion and (vi) what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean FST = 0.06, Dest = 0.12), and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies) were found. FST-and Dest-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats
    • …
    corecore