194 research outputs found

    Application of boron/epoxy reinforced aluminum stringers for the CH-54B helicopter tail cone. Phase 1: Design, analysis, fabrication and test

    Get PDF
    Design, fabrication and tests of boron/epoxy reinforced stringers for CH-54B tail con

    Application of boron/epoxy reinforced aluminum stringers and boron/epoxy skid gear for the CH54B helicopter tail cone. Phase 2: Fabrication, inspection and flight test

    Get PDF
    A CH-54B Skycrane helicopter was fabricated with boron/epoxy reinforced stringers in the tail cone and boron/epoxy tubes in the tail skid. The fabrication of the tail cone was made with conventional tooling, production shop personnel, and no major problems. The flight test program includes a stress and vibration survey using strain gages and vibration transducers located in critical areas. The program to inspect and monitor the reliability of the components is discussed

    Eccentric lamellar keratolimbal grafts harvested with a manually guided microkeratome

    Get PDF
    Background: To perform lamellar keratolimbal allograft transplantation in a one- step procedure with a single graft, we investigated the feasibility of harvesting eccentric lamellar keratolimbal grafts from conventionally processed corneoscleral buttons using a manually guided microkeratome in conjunction with an artificial anterior chamber system. Methods: We used the Moria LSK- One microkeratome and the automated lamellar therapeutic keratoplasty ( ALTK) system ( Antony, France). Ten human donor eyes were used to obtain single- piece lamellar keratolimbal grafts. Specimens were processed for light and electron microscopy. Results: Eccentric keratolimbal grafts could be obtained from all human donor buttons. Grafts include a crescent- shaped limbal and a large corneal portion. No visible damage to the limbal region was discernible. Conclusion: Our data show that the LSK- One microkeratome in conjunction with the ALTK system allows harvesting eccentric keratolimbal grafts from donor corneoscleral buttons. Copyright (c) 2007 S. Karger AG, Basel

    Symmetry breaking in crossed magnetic and electric fields

    Get PDF
    We present the first observations of cylindrical symmetry breaking in highly excited diamagnetic hydrogen with a small crossed electric field, and we give a semiclassical interpretation of this effect. As the small perpendicular electric field is added, the recurrence strengths of closed orbits decrease smoothly to a minimum, and revive again. This phenomenon, caused by interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig) Accepted for publication in Physical Review Letters. Difference from earlier preprint: we have discovered the cause of the earlier apparent discrepancy between experiment and theory and now achieve excellent agreemen

    Wake Up and Talk with Me! In-the-Field Study of an Autonomous Interactive Wake Up Robot

    Get PDF
    12th International Conference, ICSR 2020, Golden, CO, USA, November 14–18, 2020In this paper, we present a robot that is designed to smoothly wake up a user in the morning. We created an autonomous interactive wake up robot that implements a wake up behavior that was selected through preliminary experiments. We conducted a user study to test the interactive robot and compared it to a baseline robot that behaves like a conventional alarm clock. We recruited 22 participants that agreed to bring the robot to their home and test it for two consecutive nights. The participants felt significantly less sleepy after waking up with the interactive robot, and reported significantly more intention to use the interactive robot

    TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid

    Get PDF
    Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base

    Position Paper on Olfactory Dysfunction

    Get PDF
    Background: Olfactory dysfunction is an increasingly recognised condition, associated with reduced quality of life and major health outcomes such as neurodegeneration and death. However, translational research in this field is limited by heterogeneity in methodological approach, including definitions of impairment, improvement and appropriate assessment techniques. Accordingly, effective treatments are limited. In an effort to encourage high quality and comparable work in this field, among others, we propose the following ideas and recommendations. Whilst full recommendations are outlined in the main document, key points include: -Patients with suspected olfactory loss should undergo a full examination of the head and neck, including rigid nasal endoscopy. -Subjective olfactory assessment should not be undertaken in isolation, given its poor reliability. -Psychophysical assessment tools used in clinical and research settings should include reliable and validated tests of odour threshold, and/or one of odour identification or discrimination. -Comprehensive chemosensory assessment should include gustatory screening. -Smell training can be helpful in patients with olfactory loss of several aetiologies. Conclusions: We hope the current manuscript will encourage clinicians and researchers to adopt a common language, and in so doing, increase the methodological quality, consistency and generalisability of work in this field

    Preventive Effects of Omega-3 and Omega-6 Fatty Acids on Peroxide Mediated Oxidative Stress Responses in Primary Human Trabecular Meshwork Cells

    Get PDF
    Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H2O2, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H2O2 further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H2O2 stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H2O2 mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H2O2 induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side effects of omega-6, omega-3 appears to be the more beneficial fatty acid in respect of prophylactic intake for prevention of a glaucomatous disease

    The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media

    Get PDF
    The original publication can be found at www.springerlink.comDeep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.Alvarez, A. C., Hime, G., Marchesin, D., Bedrikovetski, P

    Time-Frequency Analysis of Chemosensory Event-Related Potentials to Characterize the Cortical Representation of Odors in Humans

    Get PDF
    BACKGROUND: The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. METHODOLOGY/PRINCIPAL FINDINGS: EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. CONCLUSION/SIGNIFICANCE: By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians
    corecore