3,082 research outputs found

    An observational study of race and gender homophily in nursery children

    Get PDF
    Homophily (the preference for similar others) is a commonplace feature of social life. In this observational study, we recorded association patterns (based on spatial proximity or verbal or physical interaction) among children aged 3-4 years old during unstructured playtime in a university nursery. A basic social network analysis and a quadratic assignment procedure revealed gender and race to be significant predictive factors of social interaction, with girls seemingly displaying more racial homophily than boys. Age, parent occupation and number of siblings did not predict interaction patterns

    Schedule: Still on Time?

    Get PDF

    Toward an understanding of short distance repulsions among baryons in QCD -- NBS wave functions and operator product expansion --

    Get PDF
    We report on our recent attempts to determine the short distance behaviors of general 2-baryon and 3-baryon forces, which are defined from the Nambu-Bethe-Salpeter(NBS) wave function, by using the operator product expansion and a renormalization group analysis in QCD. We have found that the repulsion at short distance increases as the number of valence quarks increases or when the number of different flavors involved decreases. This global tendency suggests a Pauli suppression principle among quark fields at work.Comment: 14 pages, add two exmples in sect.3.4, a version accepted for Progress of Theoretical Physic

    Push it to the limit: Local Group constraints on high-redshift stellar mass functions for Mstar > 10^5 Msun

    Full text link
    We constrain the evolution of the galaxy stellar mass function from 2 < z < 5 for galaxies with stellar masses as low as 10^5 Msun by combining star formation histories of Milky Way satellite galaxies derived from deep Hubble Space Telescope observations with merger trees from the ELVIS suite of N-body simulations. This approach extends our understanding more than two orders of magnitude lower in stellar mass than is currently possible by direct imaging. We find the faint end slopes of the mass functions to be alpha= -1.42(+0.07/-0.05) at z = 2 and alpha = -1.57^(+0.06/-0.06) at z = 5, and show the slope only weakly evolves from z = 5 to z = 0. Our findings are in stark contrast to a number of direct detection studies that suggest slopes as steep as alpha = -1.9 at these epochs. Such a steep slope would result in an order of magnitude too many luminous Milky Way satellites in a mass regime that is observationally complete (Mstar > 2*10^5 Msun at z = 0). The most recent studies from ZFOURGE and CANDELS also suggest flatter faint end slopes that are consistent with our results, but with a lower degree of precision. This work illustrates the strong connections between low and high-z observations when viewed through the lens of LCDM numerical simulations

    The Lattice Λ\Lambda Parameter in Domain Wall QCD

    Full text link
    We evaluate the ratio of the scale parameter Λ\Lambda in domain wall QCD to the one in the continuum theory at one loop level incorporating the effect of massless quarks. We show that the Pauli-Villars regulator is required to subtract the unphysical massive fermion modes which emerge in the fermion loop contributions to the gluon self energy. Detailed results are presented as a function of the domain wall height MM.Comment: 16 pages, 1 figure as eps-file, some references adde

    The Local Group: The Ultimate Deep Field

    Full text link
    Near-field cosmology -- using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics -- has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (∼2\sim 2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3′≈73' \approx 7 co-moving Mpc in linear size (a volume of ≈350 Mpc3\approx 350\,{\rm Mpc}^3) at z=7z=7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter halos with Mvir(z=7)≲2×109 M⊙M_{\rm vir}(z=7) \lesssim 2\times 10^{9}\,M_{\odot}. The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 103≲M⋆(z=0)/M⊙≲10910^{3} \lesssim M_{\star}(z=0) / M_{\odot} \lesssim 10^{9} (reaching M1500>−9M_{1500} > -9 at z∼7z\sim7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. It is highly complementary to the HUDF, as it probes much fainter galaxies but does not contain the intrinsically rarer, brighter sources that are detectable in the HUDF. Archaeological studies in the Local Group also provide the ability to trace the evolution of individual galaxies across time as opposed to evaluating statistical connections between temporally distinct populations. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.Comment: 6 pages, 5 figures; MNRAS Letters, in pres

    Perturbative calculation of improvement coefficients to O(g^2a) for bilinear quark operators in lattice QCD

    Get PDF
    We calculate the O(g^2 a) mixing coefficients of bilinear quark operators in lattice QCD using a standard perturbative evaluation of on-shell Green's functions. Our results for the plaquette gluon action are in agreement with those previously obtained with the Schr\"odinger functional method. The coefficients are also calculated for a class of improved gluon actions having six-link terms.Comment: 14 pages, REVTe

    International comparison of health care carbon footprints

    Get PDF
    Climate change confronts the health care sector with a dual challenge. Accumulating climate impacts are putting an increased burden on the service provision of already stressed health care systems in many regions of the world. At the same time, the Paris agreement requires rapid emission reductions in all sectors of the global economy to stay well below the 2 °C target. This study shows that in OECD countries, China, and India, health care on average accounts for 5% of the national CO2 footprint making the sector comparable in importance to the food sector. Some countries have seen reduced CO2 emissions related to health care despite growing expenditures since 2000, mirroring their economy wide emission trends. The average per capita health carbon footprint across the country sample in 2014 was 0.6 tCO2, varying between 1.51 tCO2/cap in the US and 0.06 tCO2/cap in India. A statistical analysis shows that the carbon intensity of the domestic energy system, the energy intensity of the domestic economy, and health care expenditure together explain half of the variance in per capita health carbon footprints. Our results indicate that important leverage points exist inside and outside the health sector. We discuss our findings in the context of the existing literature on the potentials and challenges of reducing GHG emissions in the health and energy sector.Austrian Climate Research ProgramPeer Reviewe
    • …
    corecore