52 research outputs found

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers

    Immunopathogenic mechanisms of HIV infection.

    No full text
    A complex array of multiphasic and multifactorial immunopathogenic mechanisms are involved in the establishment and progression of human immunodeficiency virus (HIV) disease. After primary infection, acute viremia occurs with wide dissemination of HIV. During this early viremic phase, the virus is trapped within the processes of follicular dendritic cells in the germinal centers of lymphoid tissue. Also, during this phase of primary infection, some patients show major expansions of certain subsets of CD8+ T cells that are identified by the expression of a particular variable region of the beta chain of the T-cell receptor. These expansions are manifestations of responses to HIV that may be important in controlling the progression of HIV infection. In addition, inappropriate immune activation and elevated secretion of certain proinflammatory cytokines occur during HIV infection; these cytokines play a role in the regulation of HIV expression in the tissues. Infection of progenitor cells in bone marrow and the thymus contribute to the lack of regeneration of immunocompetent cells. Dendritic cells are involved in the initiation and propagation of HIV infection in CD4+ T cells. In studies of long-term nonprogressors - persons who have stable CD4+ T-cell counts and no HIV disease progression despite years of HIV infection - preserved lymph node architecture, low viral burden, and viral expression were found

    Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells.

    No full text
    To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs), we screened self-renewing, BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures, including CXCR4(+) cells, expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm, trophoblast and vascular endothelium, suggesting correspondence to gastrulation-stage primitive streak, chorion and allantois precursors, respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny, APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors
    corecore