46 research outputs found

    Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation

    Get PDF
    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Cardiovascular and metabolic beneficial effects of an aminopyrroline for imidazoline type 1 receptor in a primate model of metabolic syndrome : study of the involved mechanismes

    No full text
    Le syndrome métabolique (SMet) est caractérisé par la conjonction de troubles cardiovasculaires et métaboliques. Une hyperactivité du système nerveux sympathique pourrait être impliquée dans le développement du SMet. Les récepteurs I1 des imidazolines (RI1) identifiés par notre équipe ont une action sympatho-inhibitrice et représentent donc une cible de choix pour le développement de nouveaux médicaments. Dans notre laboratoire, des études de pharmaco-chimie ont permis de synthétiser une série d’aminopyrrolines sélectives des RI1. Des études préliminaires nous ont permis de sélectionner un chef de file, le LNP599, qui diminue la pression artérielle et induit des effets métaboliques bénéfiques. Des effets périphériques additionnels liés à l’adiponectine ont également été remarqués. Le premier objectif de ma thèse a consisté au développement d’un modèle original de SMet chez le ouistiti pour y tester l’intérêt thérapeutique du LNP599. Le second objectif fut d’étudier les effets périphériques potentiels des ligands RI1. Ces études ont été menées chez le rat âgé, un modèle d’insulino-résistance modérée, et sur les cellules hépatocytaires HepG2.Metabolic syndrome (MetS) can be defined as a combination of cardiovascular and metabolic disorders. Sympathetic nervous system overactivity may be involved in the development of MetS. I1 imidazoline receptors (I1R), identified by our team, have a sympatho-inhibitory action and therefore, represent a target for developing new drugs. In our laboratory, pharmaco-chemical studies led to the synthesis of I1R selectives aminopyrrolines. Preliminary studies allowed us to select a leader, the LNP599, which lowers blood pressure and induces beneficial metabolic effects. Additional peripheral effects related to adiponectin were also noted. The first aim of my thesis consisted in the development of an original model of MetS in marmoset in order to test the therapeutic benefit of LNP599. The second objective was to study the potential effects of peripheral I1R ligands. These studies were conducted in elderly rats, a model of moderate insulin resistance, and in the HepG2 cells

    Etudes des effets cardio-métaboliques d'une aminopyrroline sympatho-inhibitrice dans un modèle de syndrome métabolique chez le primate non humain : mise en évidence des mécanismes d’action impliqués

    No full text
    Metabolic syndrome (MetS) can be defined as a combination of cardiovascular and metabolic disorders. Sympathetic nervous system overactivity may be involved in the development of MetS. I1 imidazoline receptors (I1R), identified by our team, have a sympatho-inhibitory action and therefore, represent a target for developing new drugs. In our laboratory, pharmaco-chemical studies led to the synthesis of I1R selectives aminopyrrolines. Preliminary studies allowed us to select a leader, the LNP599, which lowers blood pressure and induces beneficial metabolic effects. Additional peripheral effects related to adiponectin were also noted. The first aim of my thesis consisted in the development of an original model of MetS in marmoset in order to test the therapeutic benefit of LNP599. The second objective was to study the potential effects of peripheral I1R ligands. These studies were conducted in elderly rats, a model of moderate insulin resistance, and in the HepG2 cells.Le syndrome métabolique (SMet) est caractérisé par la conjonction de troubles cardiovasculaires et métaboliques. Une hyperactivité du système nerveux sympathique pourrait être impliquée dans le développement du SMet. Les récepteurs I1 des imidazolines (RI1) identifiés par notre équipe ont une action sympatho-inhibitrice et représentent donc une cible de choix pour le développement de nouveaux médicaments. Dans notre laboratoire, des études de pharmaco-chimie ont permis de synthétiser une série d’aminopyrrolines sélectives des RI1. Des études préliminaires nous ont permis de sélectionner un chef de file, le LNP599, qui diminue la pression artérielle et induit des effets métaboliques bénéfiques. Des effets périphériques additionnels liés à l’adiponectine ont également été remarqués. Le premier objectif de ma thèse a consisté au développement d’un modèle original de SMet chez le ouistiti pour y tester l’intérêt thérapeutique du LNP599. Le second objectif fut d’étudier les effets périphériques potentiels des ligands RI1. Ces études ont été menées chez le rat âgé, un modèle d’insulino-résistance modérée, et sur les cellules hépatocytaires HepG2

    0260 Imidazoline I1 receptor ligands activate hepatic adiponectin pathways and thus improve insulin sensitivity

    Get PDF
    Metabolic syndrome is defined as a cluster of cardiovascular and metabolic disorders. Previous studies in rat models of metabolic syndrome have demonstrated that ligands selective for I1 imidazoline receptor (LNPs) increase insulin sensitivity through central sympathoinhibition and an additional peripheral effect attributable to adiponectin, a major insulin-sensitizer adipokine. The objective of this study was to explore possible direct actions on hepatocytes, one of the target cells of insulin and adiponectin.Experiments were carried out in HepG2 cells, a cell line of hepatocytes. In order to evaluate the effect of LNPs on insulin sensitivity, the activation (i.e. phosphorylation) of a key actor of insulin pathways, AKT, was evaluated by measuring the ratio pAKT/AKT by Western Blot. Similarly, the effect of LNPs on adiponectin signaling was evaluated by measuring the rate of phosphorylation of the central kinase involved in adiponectin pathways, AMPK, by Western Blot. Insulin (10μM) induced the phosphorylation of AKT (pAKT/ AKT=0.49±0.16) compared to control without insulin (pAKT/AKT=0.11±0.03; p≤0.05) whereas LNPs (1μM) alone did not. Interestingly, pretreatment by LNPs (1μM) during 60 min could potentiate the insulin-induced activation of AKT: LNP509: pAKT/AKT=1.13±0.18 (p≤0.05 vs insulin alone); LNP599: pAKT/AKT=1.23±0.16 (p=0.0545 vs insulin alone).Concerning adiponectin signaling pathways, LNPs alone (from 10−9M to 10−4M) increased AMPK phosphorylation in a concentration- and time-dependent manner. The maximal effect was obtained after 10 min exposure of LNPs 10μM (untreated cells: pAMPK/AMPK=0.18±0.04; LNP 509 pAMPK/ AMPK=0.38±0.05 p≤0.05; LNP599 pAMPK/AMPK=0.46±0.17). These data suggest that LNPs on hepatic cells activate adiponectin pathways and potentiate insulin action. These two direct effects on insulin sensitive cells could account for the ameliorated insulin sensitivity observed in vivo

    Effects of imidazoline-like drugs on liver and adipose tissues, and their role in preventing obesity and associated cardio-metabolic disorders

    No full text
    International audienceBackground/objectives: We previously observed that selective agonists of the sympatho-inhibitory I1 imidazoline receptors (LNP ligands) have favorable effects on several cardiovascular and metabolic disorders defining the metabolic syndrome, including body weight. The objectives of this study were to explore the effects of LNPs on adiposity and the mechanisms involved, and to evaluate their impact on metabolic homeostasis.Methods: Young Zucker fa/fa rats were treated with LNP599 (10 mg/kg/day) for 12 weeks. Effects on body weight, adiposity (regional re-distribution, morphology, and function of adipose tissues), cardiovascular and metabolic homeostasis, and liver function were evaluated. Direct effects on insulin and AMP-activated protein kinase (AMPK) signaling were studied in human hepatoma HepG2 cells.Results: LNP599 treatment limited the age-dependent remodeling and inflammation of subcutaneous, epididymal, and visceral adipose tissues, and prevented total fat deposits and the development of obesity. Body-weight stabilization was not related to reduced food intake but rather to enhanced energy expenditure and thermogenesis. Cardiovascular and metabolic parameters were also improved and were significantly correlated with body weight but not with plasma norepinephrine. Insulin and AMPK signaling were enhanced in hepatic tissues of treated animals, whereas blood markers of hepatic disease and pro-inflammatory cytokine levels were reduced. In cultured HepG2 cells, LNP ligands phosphorylated AMPK and the downstream acetyl-CoA carboxylase and prevented oleic acid-induced intracellular lipid accumulation. They also significantly potentiated insulin-mediated AKT activation and this was independent from AMPK.Conclusions: Selective I1 imidazoline receptor agonists protect against the development of adiposity and obesity, and the associated cardio-metabolic disorders. Activation of I1 receptors in the liver, leading to stimulation of the cellular energy sensor AMPK and insulin sensitization, and in adipose tissues, leading to improvement of morphology and function, are identified as peripheral mechanisms involved in the beneficial actions of these ligands
    corecore