931 research outputs found

    Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    Get PDF
    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this paper we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives.Comment: 17 page

    Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment

    Full text link
    We present a model for diffusion in a molecularly crowded environment. The model consists of random barriers in percolation network. Random walks in the presence of slowly moving barriers show normal diffusion for long times, but anomalous diffusion at intermediate times. The effective exponents for square distance versus time usually are below one at these intermediate times, but can be also larger than one for high barrier concentrations. Thus we observe sub- as well as super-diffusion in a crowded environment.Comment: 8 pages including 4 figure

    Predictors and indicators of disability and quality of life 4 years after a severe traumatic brain injury. A Structural Equation Modelling analysis from the PariS-TBI study

    Get PDF
    ObjectiveTo assess the predictors and indicators of disability and quality of life four years after a severe traumatic brain injury (TBI), using a Structural Equation Modelling (SEM). SEM is a multivariate approach permitting to take into account the complex inter-relationships between individual predictors, in order to disentangle factors which have a direct or indirect relationship with the dependant variable.MethodsThe Paris-TBI study is a longitudinal inception cohort study of 504 patients with severe TBI in the Parisian area [1]. Among 245 survivors, 147 patients were assessed four years post-injury. Two outcome measures were analysed separately using SEM: the Glasgow Outcome Scale-extended (GOS-E) [2], which is a global measure of disability after TBI, and the QOLIBRI, a disease-specific measure of quality of life after TBI [3]. Four groups of variable were entered in the model: demographics; injury severity; psychological and cognitive impairments; somatic impairments.ResultsThe GOS-E was directly significantly related to all four groups of variables (age, gender, severity of injury, psycho-cognitive and somatic impairments). Education duration had an indirect effect, mediated by psycho-cognitive impairments. In contrast, the QOLIBRI was only directly predicted by psycho-cognitive impairments. Age and somatic impairments had an indirect influence on the QOLIBRI, via psycho-cognitive impairments.Discussion/ConclusionDisability and quality of life were directly influenced by different factors. While disability appeared to result from an interaction of a wide range of factors, including demographics, injury severity, psycho-cognitive and somatic deficiencies, quality of life was solely directly related to psycho-cognitive factors. Other factors, such as age and somatic impairments only had an indirect effect

    Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises

    Full text link
    Dynamics of an ensemble of NN-unit FitzHugh-Nagumo (FN) neurons subject to white noises has been studied by using a semi-analytical dynamical mean-field (DMF) theory in which the original 2N2 N-dimensional {\it stochastic} differential equations are replaced by 8-dimensional {\it deterministic} differential equations expressed in terms of moments of local and global variables. Our DMF theory, which assumes weak noises and the Gaussian distribution of state variables, goes beyond weak couplings among constituent neurons. By using the expression for the firing probability due to an applied single spike, we have discussed effects of noises, synaptic couplings and the size of the ensemble on the spike timing precision, which is shown to be improved by increasing the size of the neuron ensemble, even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles respond to an input spike with a partial synchronization. DMF theory is extended to a large cluster which can be divided into multiple sub-clusters according to their functions. A model calculation has shown that when the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy sub-clusters with feed-forward couplings, as in the synfire chain. Results calculated by our DMF theory are nicely compared to those obtained by direct simulations. A comparison of DMF theory with the conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice

    The Coherent State Representation of Quantum Fluctuations in the Early Universe

    Get PDF
    Using the squeezed state formalism the coherent state representation of quantum fluctuations in an expanding universe is derived. It is shown that this provides a useful alternative to the Wigner function as a phase space representation of quantum fluctuations. The quantum to classical transition of fluctuations is naturally implemented by decohering the density matrix in this representation. The entropy of the decohered vacua is derived. It is shown that the decoherence process breaks the physical equivalence between vacua that differ by a coordinate dependent phase generated by a surface term in the Lagrangian. In particular, scale invariant power spectra are only obtained for a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with corrections and significant new calculation

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    Low-field magnetoresistance in GaAs 2D holes

    Full text link
    We report low-field magnetotransport data in two-dimensional hole systems in GaAs/AlGaAs heterostructures and quantum wells, in a large density range, 2.5×1010p4.0×10112.5 \times 10^{10} \leq p \leq 4.0 \times 10^{11} cm2^{-2}, with primary focus on samples grown on (311)A GaAs substrates. At high densities, p1×1011p \gtrsim 1 \times 10^{11} cm2^{-2}, we observe a remarkably strong positive magnetoresistance. It appears in samples with an anisotropic in-plane mobility and predominantly along the low-mobility direction, and is strongly dependent on the perpendicular electric field and the resulting spin-orbit interaction induced spin-subband population difference. A careful examination of the data reveals that the magnetoresistance must result from a combination of factors including the presence of two spin-subbands, a corrugated quantum well interface which leads to the mobility anisotropy, and possibly weak anti-localization. None of these factors can alone account for the observed positive magnetoresistance. We also present the evolution of the data with density: the magnitude of the positive magnetoresistance decreases with decreasing density until, at the lowest density studied (p=2.5×1010p = 2.5 \times 10^{10} cm2^{-2}), it vanishes and is replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure
    corecore