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Abstract

There are many materials whose dielectric properties are described by a stretched
exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function.
Its physical origin and statistical-mechanical foundation have been a matter of de-
bate in the literature. In this paper we suggest a model of dielectric relaxation,
which naturally leads to a stretched exponential decay function. Some essential
characteristics of the underlying charge conduction mechanisms are considered. A
kinetic description of the relaxation and charge transport processes is proposed in
terms of equations with time-fractional derivatives.
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1 Introduction

A rich variety of materials with molecular or structural disorder have two
important properties in common. One is non-exponential, non-Debye character
of dielectric relaxation, often described by a stretched exponential, the so-
called Kohlrausch-Williams-Watts (KWW) function [1,2]

φβ(t) = exp[−(t/τ)β ] (1)
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with the exponent 0 < β 6 1 and τ a constant. This stretched exponential
relaxation has been found empirically in various amorphous materials as for
instance in many polymers and glass-like materials near the glass transition
temperature (for reviews see Refs. [3] and [4], and references therein). Some
physical models incorporating general features of the stretched exponential
dielectric relaxation are discussed in Refs. [4,5,6] where one also finds reviews
of experimental dielectric relaxation data.

The other property, often found in disordered insulators and semiconductors,
including those doped with electric charge, is universality of ac (alternating-
current) conduction, which is expressible in terms of a power-law dependence
of the real part of conductivity on frequency (Ref. [7] for review):

σ′(ω) ∝ ωη (2)

with the exponent 0 6 η < 1. The universality means that the η values
do not depend on the details of the underlying conducting lattice nor on the
microscopic charge transport mechanism operating in the system (i.e., classical
barrier crossing for ions and/or quantum mechanical tunneling for electrons).
Both β and η depend on the chemical composition of the material and the
absolute temperature.

The physical background and the statistical mechanical foundation of the
above originally phenomenological expressions have been a matter of debate
in the literature. Here we mention two hard results in their favor: (i) The
KWW function expands into a weighted superposition of the Debye single
exponential relaxation functions [5]

φβ(t) =

∞
∫

0

̺β(µ) exp(−t/µ)dµ (3)

where the weighting function ̺β(µ) is expressible in terms of a stable (Lévy)
distribution. Due to this connection with the statistics of stable laws, stretched
exponential relaxation functions can be argued to appear naturally, thus be-
ing a characteristic property of systems in which the dynamics occur on many
time scales. (ii) The power-law form of ac conduction coefficient derives from
a model [8], in which the conduction occurs as a result of random walks of
charged particles on a percolating cluster. In this paradigm the universality
of ac conduction is rooted in the universality of the percolation transition [9].
Support for this standpoint can be found in the results of Ref. [10]. The expo-
nent η is expressible in terms of the percolation indices [8] or the topological
characteristics of the lattice [9].
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In this study we analyze the properties of dielectric relaxation in disordered
solids on an equal footing with the ac conduction properties. In section 2 we
demonstrate that the exponents β and η are related to each other via β = 1−η.
We then suggest simple numerical estimates of the η values in a regime when
the conduction concentrates on a percolating cluster. In section 3 we formu-
late a self-consistent model of dielectric relaxation, in which the KWW decay
function is obtained from a power-law dependence of ac conduction coefficient
on frequency and the basic electrostatic equations. In section 4 we describe
the KWW relaxations kinetically. We are led to the issue of kinetic equations
with time fractional derivatives and we propose a systematic derivation of the
fractional relaxation and fractional diffusion equations from the property of
ac universality. We summarize our results in section 5.

2 Stretched-exponential relaxation and ac universality

2.1 General

Let a homogeneous, isotropic dielectric be exposed to the external polarizing
electric field E = E(t, r), which we consider as a function of time t and the
space coordinate, r. By homogeneous and isotropic we refer to spatial scales
larger than the typical scales of the molecular/structural disorder. Assuming
a linear and spatially local response of the material the polarization field at
time t at point r can be written as

P(t, r) =

+∞
∫

−∞

χ(t− t′)E(t′, r)dt′ (4)

where χ(t − t′) is a response or memory function. Causality requires that
χ(t− t′) = 0 for t < t′. A Fourier transformed memory function χ(t) is defined
to be the frequency-dependent complex susceptibility of the material, i.e.,

χ(ω) =

+∞
∫

−∞

χ(t)eiωtdt (5)

Given χ(ω) one defines the frequency-dependent complex dielectric parameter
as

ǫ(ω) = 1 + 4πχ(ω) (6)
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In a basic theory of the decay of polarization one is interested in the dielectric
response to a field which is steady for t < 0 and, then, is suddenly removed
at time t = 0. It is then common to write the complex function ǫ(ω) as [11]

ǫ(ω) − ǫ(∞)

ǫ(0) − ǫ(∞)
= −

∞
∫

0

dφ(t)

dt
eiωtdt (7)

where ǫ(∞) and ǫ(0) are, respectively, the high and zero frequency limits of
ǫ(ω) and φ(t) is the function that describes the decay of polarization after
the polarizing field has been removed. Equation (7) is essentially an integral
equation for the decay function. The decay function can be obtained directly
from the magnitude of the polarization response to an electric field with time
history as discussed in Ref. [12].

2.2 Connection between relaxation and memory functions

It is easy to obtain the connection between the functions φ(t) and χ(t). We
have, with χ(ω) = [ǫ(ω) − 1] /4π,

χ(t) =
1

2π

ǫ(0) − 1

4π

+∞
∫

−∞

ǫ(ω) − 1

ǫ(0) − 1
e−iωtdω (8)

In writing Eq. (8) we took into account that χ(t) and χ(ω) form a Fourier
pair. Assuming that, in the high frequency limit, the value of the dielectric
parameter is, approximately, ǫ(∞) = 1, and combining Eqs. (7) and (8) we
find

χ(t) = −
ℓ

8π2

+∞
∫

−∞

e−iωtdω

+∞
∫

0

dφ(t′)

dt′
eiωt′dt′ (9)

where ℓ = ǫ(0)−1 is the dielectric loss strength. Changing order of integration
in Eq. (9) we write

χ(t) = −
ℓ

8π2

+∞
∫

0

dφ(t′)

dt′
dt′

+∞
∫

−∞

e−iω(t−t′)dω (10)

Considering that
∫ +∞

−∞
e−iω(t−t′)dω = 2πδ(t− t′) from Eq. (10) it is found that

χ(t) = −
ℓ

4π

dφ(t)

dt
(11)
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Hence the memory function χ(t) is just the time derivative of the relaxation
function φ(t) (with a proper coefficient in front). Setting φ(t) = exp[−(t/τ)β ]
in Eq. (11) we get

χ(t) = β
ℓ

4πτβ
tβ−1 exp[−(t/τ)β ] (12)

Note that χ(t) diverges as tβ−1 for t→ +0 when β < 1.

2.3 Leading-term approximation

We now turn to an explicit calculation of the σ′(ω) function from a KWW
decay function. In fact, setting φ(t) = exp[−(t/τ)β ] and integrating by parts
in Eq. (7) we find, for the real and imaginary parts of the complex dielectric
parameter,

ǫ′(ω) − 1 = ℓ[1 − πzV (z)] (13)

ǫ′′(ω) = ℓπzQ(z) (14)

where z = ωτ is the dimensionless frequency, u = t/τ the dimensionless time,
and V (z) and Q(z) are the standard integrals:

V (z) =
1

π

∞
∫

0

exp(−uβ) sin(zu)du (15)

Q(z) =
1

π

∞
∫

0

exp(−uβ) cos(zu)du (16)

which play a prominent role in the theory of stable distributions [5]. In the
higher frequency range, physically corresponding to a departure from the “in
phase” conductivity response [10] and the transition to ac charge transport
mechanisms, series expansions of these integrals become [3,5,13]

zV (z) =
1

π

∞
∑

n=0

(−1)n 1

znβ

Γ(nβ + 1)

Γ(n+ 1)
cos

nβπ

2
(17)

zQ(z) =
1

π

∞
∑

n=1

(−1)n−1 1

znβ

Γ(nβ + 1)

Γ(n+ 1)
sin

nβπ

2
(18)

From Eqs. (17) and (18) one can see that the expansion of πzQ(z) starts from
a term which is proportional to z−β and so does the expansion of 1− πzV (z).
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Writing the susceptibility function as

χ(ω) =
ℓ

4π
[1 − πzV (z) + iπzQ(z)] (19)

then going for the leading term in the power expansion of 1−πzV (z)+iπzQ(z)
we find

χ(ω) ∝ ω−β (20)

Hence

ǫ′(ω) − 1 ∝ ω−β (21)

ǫ′′(ω) ∝ ω−β (22)

Noticing that the real part of the frequency-dependent complex conductivity
σ(ω) is expressible as

σ′(ω) = ωǫ′′(ω)/4π (23)

from Eqs. (14) and (23) we get

σ′(ω) =
ℓ

4τ
z2Q(z) (24)

with the leading term

σ′(ω) ∝ ω1−β (25)

Equation (25) reproduces the phenomenological expression in Eq. (2) with the
power exponent

η = 1 − β (26)

If the conduction occurs on a percolating cluster, the η values can be obtained
from [9]

η =
θ + d− df

2 + θ
(27)

Here, θ is the exponent of anomalous diffusion [8], which also appears in de-
scribing the dc conductivity near percolation, d is the topological (integer)
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dimension of the ambient real space, and df 6 d is the Hausdorff fractal di-
mension of the subset, on which the conduction is concentrated. Using known
estimates [14] for θ and df one has η ≃ 0, 0.3, and 0.6 for d = 1, 2, and 3,
respectively. The mean-field result, holding for d ≥ 6, is η = 1. From Eqs. (26)
and (27) it is found that

β =
2 − d+ df

2 + θ
(28)

yielding β ≃ 1, 0.7, and 0.4 for d = 1, 2, and 3. Interestingly, the estimate
β ≃ 0.4, holding for d = 3, fits the original result due to Kohlrausch (Refs.
[1] and [4] for review). This value corresponds to the value η = 1 − β ≃ 0.6,
which nicely falls into the range of theoretical arguments [9] and the existing
observational evidence [7,10,15].

3 Self-consistent dynamic-relaxation model

3.1 Formulation of the model

Our goal now is to obtain the KWW decay function analytically. We start
with a polarization field of the form

P(t, r) = P(0, r) +

+∞
∫

0

χ(t− t′)E(t′, r)dt′ (29)

where P(0, r) is the initial polarization, and E(t′, r) is the electric field. We
shall assume that there are no external electric fields acting in the system after
time t = 0, so that E(t′, r) is essentially the inherent, self-consistent electric
field in the bulk of the dielectric due to the electric charges present.

Let ρ(t, r) be the density of the electric charges at time t at point r. The
function ρ(t, r) is defined as the mean density of the charges in a small volume
around r such that the highly fluctuating molecular densities are averaged out.
If there are no external charges, the density ρ(t, r) is essentially the density
of the polarization charges, which we shall denote by ρ̃(t, r). If the external
charges are present in the bulk of the dielectric with the density ρext(t, r) then

ρ(t, r) = ρ̃(t, r) + ρext(t, r) (30)

By external charges we mean charges of external origin, that are alien to the
material. These charges may be present due to a charge injection. By allowing
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for external charges we include a class of doped insulators and semiconductors,
which offer a challenging set of fundamental problems, as well as prominent
technological applications (Refs. [16,17] and references therein). Equation (30)
extends the model in Ref. [12] in which ρext(t, r) = 0.

In the basic theory of dielectrics one writes

∇ · E(t, r) = 4πρ(t, r) (31)

and

∇ · P(t, r) = −ρ̃(t, r) (32)

so that

∇ · D(t, r) = 4πρext(t, r) (33)

where D = E + 4πP is the electric displacement in the medium. The density
of the polarization currents is defined by

j̃(t, r) =
∂

∂t
P(t, r) (34)

Performing ∂/∂t on Eq. (29) it is found that

j̃(t, r) =

+∞
∫

0

σ̃(t− t′)E(t′, r)dt′ (35)

where we introduced

σ̃(t− t′) =
∂

∂t
χ(t− t′) (36)

Note that, due to causality, σ̃(t− t′) = 0 for t < t′.

If external charges are present in the system, they may cause, in addition, their
own current, jext(t, r). Before we write an expression for jext(t, r) we address
the issue of the microscopic charge transport mechanism:

It is generally believed that, in relatively poor conductors such as major glasses
and polymers, the polarization current is caused by orientational motion of
polar molecules or dipoles containing parts of these [3,11]. The external cur-
rent, in its turn, could be thought of as arising from a migration of charged
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particles along the underlying stationary molecular distribution. This migra-
tion could be mediated by a specific chemical composition of the material, as
for instance by the bonding structure in conducting polymers [16]. In porous,
nano-crystalline materials, the transport of charge may also show a strong,
nonlinear dependence on the charge density and injection, a phenomenon usu-
ally explained in terms of trap-filling (Ref. [17] and references therein). As a
model approximation, here we shall rely on the hypothesis of trap-controlled
conduction and diffusion, in which the transport occurs as a result of hopping
[7] of charged particles between the localized states. If the hopping has a char-
acteristic time, then the transport is described by a Markovian chain process
with a characteristic hopping frequency. In a more general situation there is
a distribution of waiting or residence times between the consecutive steps of
the motion and the Markovian property is invalidated. The current density is
then a flow with memory:

jext(t, r) =

+∞
∫

0

σext(t− t′)E(t′, r)dt′ (37)

where σext(t− t′) is a memory function which describes the multi-scale trap-
ping and detrapping of the external charges in wide-gap potential wells of the
conduction-band level. Due to causality, σext(t− t′) = 0 for t < t′.

The total current density in the bulk of the material can now be written as

j(t, r) = j̃(t, r) + jext(t, r) (38)

Utilizing Eqs. (35) and (37) we have

j(t, r) =

+∞
∫

0

σ(t− t′)E(t′, r)dt′ (39)

with

σ(t− t′) = σ̃(t− t′) + σext(t− t′) (40)

A Fourier transformed σ(t) is defined to be the frequency-dependent complex
conductivity of the material, i.e.,

σ(ω) = σ̃(ω) + σext(ω) (41)

where we introduced the partial ac conductivities σ̃(ω) and σext(ω) due to
respectively the polarization and external charges. The conservation of the
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electric charge is expressed by the continuity equation

∂

∂t
ρ(t, r) + ∇ · j(t, r) = 0 (42)

Substituting j(t, r) from Eq. (39) and taking ∇· under the time integration we
have

∂

∂t
ρ(t, r) +

+∞
∫

0

σ(t− t′)∇ · E(t′, r)dt′ = 0 (43)

Utilizing Eq. (31) we finally arrive at a closed integro-differential equation for
the charge density, i.e.,

∂

∂t
ρ(t, r) + 4π

+∞
∫

0

σ(t− t′)ρ(t′, r)dt′ = 0 (44)

3.2 Stretched exponential relaxation functions

By Laplace transforming Eq. (44) we find

sρ(s, r) − ρ(0, r) + 4πσ(s)ρ(s, r) = 0 (45)

where ρ(0, r) is the density of the charges at time t = 0, and σ(s) is the Laplace
transform of σ(t). We now speculate on the form of the σ(s) function:

There is an increasing belief [18] that scale-invariance and fractality are hall-
marks of chaos and disorder. That such an argument leads to a power-law
behavior of ac conduction coefficient was pointed out by Milovanov and Ras-
mussen [9] who based this on the early work of Gefen et al. [8]. One would
expect that, for those time scales on which the dynamics are dictated by the
disorder, the partial ac conductivities can be modeled by power-laws, i.e.,
σ̃(ω) ∝ ωη1 and σext(ω) ∝ ωη2 with some fractional η1 and η2. Here we assume
that η1 ≃ η2, i.e., that the two exponents are approximately the same. This
assumption refers to universality of ac conduction [7,10] and indicates that the
scaling properties of conduction of polarization charges and external charges
are determined by the fractal geometric properties of the material and not by
the details of the conduction mechanism. Writing σ̃(ω) ∝ ωη and σext(ω) ∝ ωη

with the same power η we have, for the total conductivity

σ(s) = αsη (46)
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with α a constant coefficient. This power-law form is just the Laplace version
of Eq. (2). Note that α may generally depend on the average concentration of
the external charges in the conducting domain.

Separating variables in Eq. (45) we write ρ(s, r) = φ(s)ψ(r) with ψ(r) = ρ(0, r)
the initial charge-density. Combining Eqs. (45) and (46) it is found that

φ(s) =
1

s + 4παsη
(47)

In the time domain,

φ(t) =
1

2πi

+i∞
∫

−i∞

est

s + τ−β s1−β
ds (48)

where we introduced the notations β = 1 − η and τ−β = 4πα. Equation (48)

coincides with the definition of the Mittag-Leffler function Eβ

[

−(t/τ)β
]

(Eq.

(B.1) in Appendix B of Ref. [19]). The Mittag-Leffler function has the series
expansion

Eβ

[

−(t/τ)β
]

=
∞
∑

n=0

(−1)n (t/τ)nβ

Γ(nβ + 1)
(49)

For short times, this expansion goes as a stretched exponential,

Eβ

[

−(t/τ)β
]

≈ exp
[

−(t/τ)β/Γ(β + 1)
]

(50)

This closed analytical form replicates the KWW decay function in Eq. (1).
Finally, for the charge relaxation by ac charge transport mechanisms,

ρ(t, r) ∝ exp
[

−(t/τ)β/Γ(β + 1)
]

(51)

where we omitted the space dependence for simplicity. Limiting cases of ex-
pression (51) are the following:

ρ̃(t, r) ≫ ρext(t, r) − Equation (51) leads to a stretched exponential relaxation
of the polarization charges. For many years, theoretical justification of this
stretched exponential relaxation regime has been an issue in the theory of
dielectric relaxation [20].

ρext(t, r) ≫ ρ̃(t, r) − Equation (51) leads to a stretched exponential relaxation
of the external charges. This regime may be appropriate for poorly polarizable
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disordered media when the above condition is satisfied due to a small ρ̃(t, r).
An observational verification of this regime might constitute an experimental
challenge.

4 Fractional kinetic equations

The purpose of this section is to describe the KWW relaxations kinetically.
We intend to demonstrate that the power-law dependence of the ac conduc-
tion coefficient on frequency leads to a fractional extension of the relaxation
and diffusion equations, which accommodate fractional-order time derivatives.
These offer a suitable analytic formalism to incorporate the features of ac uni-
versality and the underlying structural disorder. The discussion below draws
on the paradigm of fractional kinetics [21], which finds expanding applications
in various fields of research [22,23,24,25].

4.1 Fractional relaxation equation

First, we notice that the power-law sη with the fractional 0 < η < 1 is
the Laplace transform of the Riemann-Liouville derivative, which is defined
through [27]

0D
η
tψ(t, r) =

1

Γ(1 − η)

∂

∂t

t
∫

0

dt′
ψ(t′, r)

(t− t′)η
(52)

with ψ(t, r) a function from the class of differintegrable functions. The Riemann-
Liouville derivative is a well-defined fractional extension of the ordinary partial
time derivative. Setting σ(s) = αsη in the dispersion relation (45) and replac-
ing sη by 0D

η
t we write, with η = 1 − β and τ−β = 4πα,

∂

∂t
ρ(t, r) = −τ−β

0D
1−β
t ρ(t, r) (53)

Equation (53) is the canonical form of the fractional relaxation equation [28].
Applications of this are reviewed in Refs. [19,23,24]. Here we add to the existing
knowledge by proposing that relaxations in disordered solids are described
by the fractional relaxation equation, provided that the dynamics are self-
consistent, and the property of ac universality is verified.
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4.2 Fractional diffusion equation describing sub-diffusion

The above analysis applies to length scales much longer than the mean-free
paths of charges participating in the ac conduction processes. At length scales
comparable to or shorter than these, the dynamics of relaxation should be
described kinetically. The key issue is the form of the flow function, which we
define as

j(t, r) = −

t
∫

0

D(t− t′)∇ρ(t′, r)dt′ (54)

with a memory kernel D(t − t′) such that D(t − t′) = 0 for t < t′. When
D(t − t′) is a delta function, Eq. (54) reduces to the well known, Fick’s law.
A Fourier transformed D(t) is defined as the frequency-dependent complex
diffusion coefficient, D(ω). The value of D(ω) can be expressed in terms of the
ac conduction coefficient as

D(ω) =
T

ne2
σ(ω) (55)

Here, e denotes the carrier charge, n their number density, and T the absolute
temperature. Equation (55) indicates that the properties of charge conduction
and diffusion are determined, for each time and frequency scale, by essentially
the same collisional properties. For the diffusion on fractals, Eq. (55) can be
obtained as a Fourier transform of the average size- and time-scale depen-
dent diffusion coefficient [8]. In the zero-frequency limit, Eq. (55) reduces to
the conventional Einstein relation between the diffusion constant and the dc
conductivity.

Combining Eqs. (2) and (55) we can propose that, in the frequency range in
which the ac conduction coefficient can be modeled by a power law,

D(ω) ∝ ωη (56)

Such power-law behavior of the frequency-dependent diffusion coefficient has
been found in, for instance, stochastic Hamiltonian systems (Ref. [26] and
references therein).

By Laplace transforming Eq. (54) we get

j(s, r) = −D(s)∇ρ(s, r) (57)
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where D(s) is the Laplace transform of D(t). When substituted into the con-
tinuity Eq. (42) this yields

sρ(s, r) − ρ(0, r) = D(s)∇2ρ(s, r) (58)

Adhering to the power-law form σ(s) = αsη from Eq. (55) we have D(s) = Λsη

with Λ = αT/ne2. Utilizing the scaling D(s) ∝ sη in Eq. (58) we write

sρ(s, r) − ρ(0, r) = sη
∇

2ρ(s, r) (59)

where Λ = 1 for simplicity. In the time domain, Eq. (59) becomes

∂

∂t
ρ(t, r) = 0D

1−β
t ∇

2ρ(t, r) (60)

where we used η = 1−β. Equation (60) is the canonical form of the fractional
diffusion equation describing sub-diffusion [19], with β the fractal dimension
in time [29]. In various settings, this equation has been derived and discussed
in the literature [18,19,23,24,25,26,29,30,31,32].

The characteristic function which is the two sided Fourier transform of ρ(t, r)
over the space variable r satisfies

∂

∂t
ρ(t,k) = −k2

0D
1−β
t ρ(t,k) (61)

Equation (61) is essentially the fractional relaxation equation in wave-vector
space. For the small Λk2tβ . 1, the characteristic function reduces to a
stretched exponential decay function:

ρ(t,k) ≈ exp
[

−k2tβ/Γ(β + 1)
]

(62)

In the real space, the fundamental solution of the fractional diffusion Eq. (60)
is expressible in terms of a stretched Gaussian distribution (see Ref. [24] where
further particularities of the initial conditions for time-fractional equations are
discussed).

5 Summary

We have discussed the properties of dielectric relaxation and ac (alternating-
current) conduction in disordered solids, treating them on essentially the
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same footing. Having assumed the property of ac universality, we found that
the relaxations are stretched exponential rather than the Debye exponential.
Our results comply with the classical phenomenological expressions due to
Kohlrausch, Williams, and Watts (KWW). We have shown that the KWW
decay function can be obtained analytically from a self-consistent model of
dielectric relaxation, in which both the polarization and electric source fields
are self-consistently generated by the residual charge-density. The exponent
of the KWW decay function is related to the exponent of the ac conduction
coefficient via β = 1−η. Assuming that the conduction concentrates on a per-
colating cluster we found η values within the range of observational evidence.
Finally, we found that the relaxations are described by a fractional exten-
sion of the relaxation and diffusion equations, which naturally incorporate the
power-law dependence of ac conduction coefficient on frequency.
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