1,046 research outputs found
Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence
Motivated by suggestions that binaries with almost equal-mass components
("twins") play an important role in the formation of double neutron stars and
may be rather abundant among binaries, we study the stability of synchronized
close and contact binaries with identical components in circular orbits. In
particular, we investigate the dependency of the innermost stable circular
orbit on the core mass, and we study the coalescence of the binary that occurs
at smaller separations. For twin binaries composed of convective main-sequence
stars, subgiants, or giants with low mass cores (M_c <~0.15M, where M is the
mass of a component), a secular instability is reached during the contact
phase, accompanied by a dynamical mass transfer instability at the same or at a
slightly smaller orbital separation. Binaries that come inside this instability
limit transfer mass gradually from one component to the other and then coalesce
quickly as mass is lost through the outer Lagrangian points. For twin giant
binaries with moderate to massive cores (M_c >~0.15M), we find that stable
contact configurations exist at all separations down to the Roche limit, when
mass shedding through the outer Lagrangian points triggers a coalescence of the
envelopes and leaves the cores orbiting in a central tight binary. In addition
to the formation of binary neutron stars, we also discuss the implications of
our results for the production of planetary nebulae with double degenerate
central binaries.Comment: 17 pages, accepted to ApJ, final version includes discussion of
planetary nebulae with central binaries and a new figure about shock heating,
visualizations at http://webpub.allegheny.edu/employee/j/jalombar/movies
The Wisconsin Plasma Astrophysics Laboratory
The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user
facility designed to study a range of astrophysically relevant plasma processes
as well as novel geometries that mimic astrophysical systems. A multi-cusp
magnetic bucket constructed from strong samarium cobalt permanent magnets now
confines a 10 m, fully ionized, magnetic-field free plasma in a spherical
geometry. Plasma parameters of to eV and
to cm provide an ideal testbed
for a range of astrophysical experiments including self-exciting dynamos,
collisionless magnetic reconnection, jet stability, stellar winds, and more.
This article describes the capabilities of WiPAL along with several
experiments, in both operating and planning stages, that illustrate the range
of possibilities for future users.Comment: 21 pages, 12 figures, 2 table
A List of Galaxies for Gravitational Wave Searches
We present a list of galaxies within 100 Mpc, which we call the Gravitational
Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up
searches of electromagnetic counterparts from gravitational wave searches. Due
to the time constraints of rapid follow-up, a locally available catalogue of
reduced, homogenized data is required. To achieve this we used four existing
catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog
of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains
information on sky position, distance, blue magnitude, major and minor
diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these
quantities are either taken directly from the literature or estimated based on
our understanding of the uncertainties associated with the measurement method.
By using the PGC numbering system developed for HyperLEDA, the catalogue has a
reduced level of degeneracies compared to catalogues with a similar purpose and
is easily updated. We also include 150 Milky Way globular clusters. Finally, we
compare the GWGC to previously used catalogues, and find the GWGC to be more
complete within 100 Mpc due to our use of more up-to-date input catalogues and
the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages,
7 figure
Circular Polarization in Pulsar Integrated Profiles: Updates
We update the systematic studies of circular polarization in integrated pulse
profiles by Han et al (1998). Data of circular polarization profiles are
compiled. Sense reversals can occur in core or cone components, or near the
intersection between components. The correlation between the sense of circular
polarization and the sense of position angle variation for conal-double pulsars
is confirmed with a much large database. Circular polarization of some pulsars
has clear changes with frequency. Circular polarization of millisecond pulsars
is marginally different from that of normal pulsars.Comment: 10 pages, 6 figures, accepted and will be published soon by Chinese
Journal of Astronomy and Astrophysics (ChJAA
Semi-Analytic Stellar Structure in Scalar-Tensor Gravity
Precision tests of gravity can be used to constrain the properties of
hypothetical very light scalar fields, but these tests depend crucially on how
macroscopic astrophysical objects couple to the new scalar field. We develop
quasi-analytic methods for solving the equations of stellar structure using
scalar-tensor gravity, with the goal of seeing how stellar properties depend on
assumptions made about the scalar coupling at a microscopic level. We
illustrate these methods by applying them to Brans-Dicke scalars, and their
generalization in which the scalar-matter coupling is a weak function of the
scalar field. The four observable parameters that characterize the fields
external to a spherically symmetric star (the stellar radius, R, mass, M,
scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject
to two relations because of the matching to the interior solution, generalizing
the usual mass-radius, M(R), relation of General Relativity. We identify how
these relations depend on the microscopic scalar couplings, agreeing with
earlier workers when comparisons are possible. Explicit analytical solutions
are obtained for the instructive toy model of constant-density stars, whose
properties we compare to more realistic equations of state for neutron star
models.Comment: 39 pages, 9 figure
Description of the Scenario Machine
We present here an updated description of the "Scenario Machine" code. This
tool is used to carry out a population synthesis of binary stars. Previous
version of the description can be found at
http://xray.sai.msu.ru/~mystery//articles/review/contents.htmlComment: 32 pages, 3 figures. Corrected typo
Deeply virtual and exclusive electroproduction of omega mesons
The exclusive omega electroproduction off the proton was studied in a large
kinematical domain above the nucleon resonance region and for the highest
possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS
spectrometer. Cross sections were measured up to large values of the
four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the
interference terms sigma_TT and sigma_TL to the cross sections, as well as an
analysis of the omega spin density matrix, indicate that helicity is not
conserved in this process. The t-channel pi0 exchange, or more generally the
exchange of the associated Regge trajectory, seems to dominate the reaction
gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag
diagrams, related to Generalized Parton Distributions in the nucleon, are
therefore difficult to extract for this process. Remarkably, the high-t
behaviour of the cross sections is nearly Q2-independent, which may be
interpreted as a coupling of the photon to a point-like object in this
kinematical limit.Comment: 15 pages,19 figure
Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines
The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
- …