668 research outputs found
Dendrimer-Encapsulated Nanoparticles: New Synthetic and Characterization Methods and Catalytic Applications
In this article we describe the synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles (DENs). These materials are synthesized using a template approach in which metal ions are extracted into the interior of dendrimers and then subsequently reduced chemically to yield nearly size-monodisperse particles having diameters in the 1-2 nm range. Monometallic, bimetallic (alloy and core@shell), and semiconductor nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticle replica, but also as a stabilizer for the nanoparticle. In this perspective, we report on progress in the synthesis, characterization, and applications of these materials since our last review in 2005. Significant advances in the synthesis of core@shell DENs, characterization, and applications to homogeneous and heterogeneous catalysis (including electrocatalysis) are emphasized.U.S. Department of Energy, Office of Basic Energy Sciences DE-FG02-09ER16090U.S. National Science Foundation 0847957Robert A. Welch Foundation F-0032Chemistr
In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma.
The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites
The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail
Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases
BACKGROUND: The Spinal Instability Neoplastic Score (SINS) categorizes tumor related spinal instability. It has the potential to streamline the referral of patients with established or potential spinal instability to a spine surgeon. This study aims to define the inter- and intra-observer reliability and validity of SINS among radiation oncologists. METHODS: Thirty-three radiation oncologists, across ten international sites, rated 30 neoplastic spinal disease cases. For each case, the total SINS (0-18 points), three clinical categories (stable: 0-6 points, potentially unstable: 7-12 points, and unstable: 13-18 points), and a binary scale (‘stable’: 0-6 points and ‘current or possible instability’; surgical consultation recommended: 7-18 points) were recorded. Evaluation was repeated 6-8 weeks later. Inter-observer agreement and intra-observer reproducibility were calculated by means of the kappa statistic and translated into levels of agreement (slight, fair, moderate, substantial, and excellent). Validity was determined by comparing the ratings against a spinal surgeon’s consensus standard. RESULTS: Radiation oncologists demonstrated substantial (κ = 0.76) inter-observer and excellent (κ = 0.80) intra-observer reliability when using the SINS binary scale (‘stable’ versus ‘current or possible instability’). Validity of the binary scale was also excellent (κ = 0.85) compared with the gold standard. None of the unstable cases was rated as stable by the radiation oncologists ensuring all were appropriately recommended for surgical consultation. CONCLUSIONS: Among radiation oncologists SINS is a highly reliable, reproducible, and valid assessment tool to address a key question in tumor related spinal disease: Is the spine ‘stable’ or is there ‘current or possible instability’ that warrants surgical assessment
The Genetics of Neuropathic Pain from Model Organisms to Clinical Application.
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic
Genetic correlation of the plasma lipidome with type 2 diabetes, prediabetes and insulin resistance in Mexican American families
Background
Differential plasma concentrations of circulating lipid species are associated with pathogenesis of type 2 diabetes (T2D). Whether the wide inter-individual variability in the plasma lipidome contributes to the genetic basis of T2D is unknown. Here, we investigated the potential overlap in the genetic basis of the plasma lipidome and T2D-related traits. Results
We used plasma lipidomic data (1202 pedigreed individuals, 319 lipid species representing 23 lipid classes) from San Antonio Family Heart Study in Mexican Americans. Bivariate trait analyses were used to estimate the genetic and environmental correlation of all lipid species with three T2D-related traits: risk of T2D, presence of prediabetes and homeostatic model of assessment – insulin resistance. We found that 44 lipid species were significantly genetically correlated with one or more of the three T2D-related traits. Majority of these lipid species belonged to the diacylglycerol (DAG, 17 species) and triacylglycerol (TAG, 17 species) classes. Six lipid species (all belonging to the triacylglycerol class and containing palmitate at the first position) were significantly genetically correlated with all the T2D-related traits. Conclusions
Our results imply that: a) not all plasma lipid species are genetically informative for T2D pathogenesis; b) the DAG and TAG lipid classes partially share genetic basis of T2D; and c) 1-palmitate containing TAGs may provide additional insights into the genetic basis of T2D
Common carotid intima media thickness and ankle-brachial pressure index correlate with local but not global atheroma burden:a cross sectional study using whole body magnetic resonance angiography
Common carotid intima media thickness (CIMT) and ankle brachial pressure index (ABPI) are used as surrogate marker of atherosclerosis, and have been shown to correlate with arterial stiffness, however their correlation with global atherosclerotic burden has not been previously assessed. We compare CIMT and ABPI with atheroma burden as measured by whole body magnetic resonance angiography (WB-MRA).50 patients with symptomatic peripheral arterial disease were recruited. CIMT was measured using ultrasound while rest and exercise ABPI were performed. WB-MRA was performed in a 1.5T MRI scanner using 4 volume acquisitions with a divided dose of intravenous gadolinium gadoterate meglumine (Dotarem, Guerbet, FR). The WB-MRA data was divided into 31 anatomical arterial segments with each scored according to degree of luminal narrowing: 0 = normal, 1 = <50%, 2 = 50-70%, 3 = 70-99%, 4 = vessel occlusion. The segment scores were summed and from this a standardized atheroma score was calculated.The atherosclerotic burden was high with a standardised atheroma score of 39.5±11. Common CIMT showed a positive correlation with the whole body atheroma score (β 0.32, p = 0.045), however this was due to its strong correlation with the neck and thoracic segments (β 0.42 p = 0.01) with no correlation with the rest of the body. ABPI correlated with the whole body atheroma score (β -0.39, p = 0.012), which was due to a strong correlation with the ilio-femoral vessels with no correlation with the thoracic or neck vessels. On multiple linear regression, no correlation between CIMT and global atheroma burden was present (β 0.13 p = 0.45), while the correlation between ABPI and atheroma burden persisted (β -0.45 p = 0.005).ABPI but not CIMT correlates with global atheroma burden as measured by whole body contrast enhanced magnetic resonance angiography in a population with symptomatic peripheral arterial disease. However this is primarily due to a strong correlation with ilio-femoral atheroma burden
Evidence for Pervasive Adaptive Protein Evolution in Wild Mice
The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans
- …