552 research outputs found

    Smart Institutions for Smart Cities

    Full text link
    Smart cities employ creativity of the population for innovations supporting social and economic development. In this context, this paper explores the role of framework conditions on special supply effects of university hospitals, which can invite further research institutions for intense collaboration, thereby stimulating innovations. The case study, comparing a hospital in Russia with one in Germany, is based on the concept of the employment multiplier. The results show that exogenously given, but, more importantly, also modifiable framework conditions lead to large differences regarding the employment multiplier. Thus, it should be the concern of smart cities to make smart use of their institutions, such as university hospitals, by adjusting the conditions, under which they are operating. © 2018 Institute of Physics Publishing. All rights reserved

    On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes

    Full text link
    We study the phase structure and equilibrium state space geometry of R-charged black holes in D=5D = 5, 4 and 7 and the corresponding rotating D3D3, M2M2 and M5M5 branes. For various charge configurations of the compact black holes in the canonical ensemble we demonstrate new liquid-gas like phase coexistence behaviour culminating in second order critical points. The critical exponents turn out to be the same as that of four dimensional asymptotically AdS black holes in Einstein Maxwell theory. We further establish that the regions of stability for R-charged black holes are, in some cases, more constrained than is currently believed, due to properties of some of the response coefficients. The equilibrium state space scalar curvature is calculated for various charge configurations, both for the case of compact as well as flat horizons and its asymptotic behaviour with temperature is established.Comment: 1 + 33 pages, LaTeX, 25 figures. References adde

    On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes

    Full text link
    In this paper, we study various aspects of the equilibrium thermodynamic state space geometry of AdS black holes. We first examine the Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context, the state space scalar curvature of these black holes is analysed in various regions of their thermodynamic parameter space. This provides important new insights into the structure and significance of the scalar curvature. We further investigate critical phenomena, and the behaviour of the scalar curvature near criticality, for KN-AdS black holes in two mixed ensembles, introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in the canonical ensemble. This suggests an universality in the scaling behaviour near critical points of AdS black holes. Our results further highlight qualitative differences in the thermodynamic state space geometry for electric charge and angular momentum fluctuations of these.Comment: 1 + 37 Pages, LaTeX, includes 31 figures. A figure and a clarification added

    An Exact Fluctuating 1/2-BPS Configuration

    Full text link
    This work explores the role of thermodynamic fluctuations in the two parameter giant and superstar configurations characterized by an ensemble of arbitrary liquid droplets or irregular shaped fuzzballs. Our analysis illustrates that the chemical and state-space geometric descriptions exhibit an intriguing set of exact pair correction functions and the global correlation lengths. The first principle of statistical mechanics shows that the possible canonical fluctuations may precisely be ascertained without any approximation. Interestingly, our intrinsic geometric study exemplifies that there exist exact fluctuating 1/2-BPS statistical configurations which involve an ensemble of microstates describing the liquid droplets or fuzzballs. The Gaussian fluctuations over an equilibrium chemical and state-space configurations accomplish a well-defined, non-degenerate, curved and regular intrinsic Riemannian manifolds for all physically admissible domains of black hole parameters. An explicit computation demonstrates that the underlying chemical correlations involve ordinary summations, whilst the state-space correlations may simply be depicted by standard polygamma functions. Our construction ascribes definite stability character to the canonical energy fluctuations and to the counting entropy associated with an arbitrary choice of excited boxes from an ensemble of ample boxes constituting a variety of Young tableaux.Comment: Minor changes, added references, 30 pages, 4 figures, PACS numbers: 04.70.-s: Physics of black holes; 04.70.-Bw: Classical black holes; 04.50.Gh Higher-dimensional black holes, black strings, and related objects; 04.60.Cf Gravitational aspects of string theory, accepted for publication in JHE

    Expanding the palette of phenanthridinium cations

    Get PDF
    5,6-Disubstituted phenanthridinium cations have a range of redox, fluorescence and biological properties. Some properties rely on phenanthridiniums intercalating into DNA, but the use of these cations as exomarkers for the reactive oxygen species (ROS), superoxide, and as inhibitors of acetylcholine esterase (AChE) do not require intercalation. A versatile modular synthesis of 5,6-disubstituted phenanthridiniums that introduces diversity by Suzuki–Miyaura coupling, imine formation and microwave-assisted cyclisation is presented. Computational modelling at the density functional theory (DFT) level reveals that the novel displacement of the aryl halide by an acyclic N-alkylimine proceeds by an SNAr mechanism rather than electrocyclisation. It is found that the displacement of halide is concerted and there is no stable Meisenheimer intermediate, provided the calculations consistently use a polarisable solvent model and a diffuse basis set

    Thermodynamics of a class of non-asymptotically flat black holes in Einstein-Maxwell-Dilaton theory

    Full text link
    We analyse in detail the thermodynamics in the canonical and grand canonical ensembles of a class of non-asymptotically flat black holes of the Einstein-(anti) Maxwell-(anti) Dilaton theory in 4D with spherical symmetry. We present the first law of thermodynamics, the thermodynamic analysis of the system through the geometrothermodynamics methods, Weinhold, Ruppeiner, Liu-Lu-Luo-Shao and the most common, that made by the specific heat. The geometric methods show a curvature scalar identically zero, which is incompatible with the results of the analysis made by the non null specific heat, which shows that the system is thermodynamically interacting, does not possess extreme case nor phase transition. We also analyse the local and global stability of the thermodynamic system, and obtain a local and global stability for the normal case for 0<\gamma<1 and for other values of \gamma, an unstable system. The solution where \gamma=0 separates the class of locally and globally stable solutions from the unstable ones.Comment: 18 pages, version accepted for publication in General Relativity and Gravitatio

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure

    Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes

    Full text link
    We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two "mixed" ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.Comment: 1 + 41 pages, LaTeX, 46 figures. Discussions, clarifications and references adde

    State-space Manifold and Rotating Black Holes

    Full text link
    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ MM-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric AdS5AdS_5 black holes, D1D_1-D5D_5 configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scaling property suggest that the brane-brane statistical pair correlation functions divulge an asymmetric nature, in comparison with the others. This approach indicates that all above configurations are effectively attractive and stable, on an arbitrary hyper-surface of the state-space manifolds. It is nevertheless noticed that there exists an intriguing relationship between non-ideal inter-brane statistical interactions and phase transitions. The ramifications thus described are consistent with the existing picture of the microscopic CFTs. We conclude with an extended discussion of the implications of this work for the physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry; Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related objects. Edited the bibliograph
    corecore