428 research outputs found

    Polarized rho mesons and the asymmetry between Delta d^bar(x) and Delta u^bar(x) in the sea of the nucleon

    Full text link
    We present a calculation of the polarized rho meson cloud in a nucleon using time-ordered perturbation theory in two different variants advocated in the literature. We calculate the induced difference between the distributions Delta d^bar(x) and Delta u^bar(x). We use a recent lattice calculation to motivate an ansatz for the polarized valence quark distribution of the rho meson. Our calculations show that the two theoretical approaches give vastly different results. We conclude that Delta d^bar(x) - Delta u^bar(x) can be of relevant size with important consequences for the combined fits of polarized distribution functions.Comment: 14 pages LaTeX, 8 figures; v3: some minor changes; this preprint supports the version to appear in Phys. Lett. B with an additional appendi

    Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance

    Get PDF
    The processes involving low energy KˉN\bar{K}N and YπY\pi interactions (where Y=ΣY= \Sigma or Λ\Lambda) are studied in the framework of heavy baryon chiral perturbation theory with the Λ\Lambda(1405) resonance appearing as an independent field. The leading and next-to-leading terms in the chiral expansion are taken into account. We show that an approach which explicitly includes the Λ\Lambda(1405) resonance as an elementary quantum field gives reasonable descriptions of both the threshold branching ratios and the energy dependence of total cross sections.Comment: 16 pages, 6 figure

    QFT with Twisted Poincar\'e Invariance and the Moyal Product

    Get PDF
    We study the consequences of twisting the Poincare invariance in a quantum field theory. First, we construct a Fock space compatible with the twisting and the corresponding creation and annihilation operators. Then, we show that a covariant field linear in creation and annihilation operators does not exist. Relaxing the linearity condition, a covariant field can be determined. We show that it is related to the untwisted field by a unitary transformation and the resulting n-point functions coincide with the untwisted ones. We also show that invariance under the twisted symmetry can be realized using the covariant field with the usual product or by a non-covariant field with a Moyal product. The resulting S-matrix elements are shown to coincide with the untwisted ones up to a momenta dependent phase.Comment: 11 pages, references adde

    Quantum Extremism: Effective Potential and Extremal Paths

    Full text link
    The reality and convexity of the effective potential in quantum field theories has been studied extensively in the context of Euclidean space-time. It has been shown that canonical and path-integral approaches may yield different results, thus resolving the `convexity problem'. We discuss the transferral of these treatments to Minkowskian space-time, which also necessitates a careful discussion of precisely which field configurations give the dominant contributions to the path integral. In particular, we study the effective potential for the N=1 linear sigma model.Comment: 11 pages, 4 figure

    Relativistic Point-Coupling Models as Effective Theories of Nuclei

    Get PDF
    Recent studies have shown that concepts of effective field theory such as naturalness can be profitably applied to relativistic mean-field models of nuclei. Here the analysis by Friar, Madland, and Lynn of naturalness in a relativistic point-coupling model is extended. Fits to experimental nuclear data support naive dimensional analysis as a useful principle and imply a mean-field expansion analogous to that found for mean-field meson models.Comment: 26 pages, REVTeX 3.0 with epsf.sty, plus 5 figure

    On the CP-odd Nucleon Potential

    Full text link
    The CP-odd nucleon potential for different models of CP violation in the one meson exchange approximation is studied. It is shown that the main contribution is due to the π\pi-meson exchange which leads to a simple one parameter CP-odd nucleon potential.Comment: 12 pages, RevTex, UM-P-92/114, OZ-92/3

    A Chiral Effective Lagrangian for Nuclei

    Full text link
    An effective hadronic lagrangian consistent with the symmetries of quantum chromodynamics and intended for applications to finite-density systems is constructed. The degrees of freedom are (valence) nucleons, pions, and the low-lying non-Goldstone bosons, which account for the intermediate-range nucleon-nucleon interactions and conveniently describe the nonvanishing expectation values of nucleon bilinears. Chiral symmetry is realized nonlinearly, with a light scalar meson included as a chiral singlet to describe the mid-range nucleon-nucleon attraction. The low-energy electromagnetic structure of the nucleon is described within the theory using vector-meson dominance, so that external form factors are not needed. The effective lagrangian is expanded in powers of the fields and their derivatives, with the terms organized using Georgi's ``naive dimensional analysis''. Results are presented for finite nuclei and nuclear matter at one-baryon-loop order, using the single-nucleon structure determined within the model. Parameters obtained from fits to nuclear properties show that naive dimensional analysis is a useful principle and that a truncation of the effective lagrangian at the first few powers of the fields and their derivatives is justified.Comment: 43 pages, REVTeX 3.0 with epsf.sty, plus 12 figure

    Convergence of the Born Series with Low-Momentum Interactions

    Full text link
    The nonperturbative nature of nucleon-nucleon interactions as a function of a momentum cutoff is studied using Weinberg eigenvalues as a diagnostic. This investigation extends an earlier study of the perturbative convergence of the Born series to partial waves beyond the 3S1-3D1 channel and to positive energies. As the cutoff is lowered using renormalization-group or model-space techniques, the evolution of nonperturbative features at large cutoffs from strong short-range repulsion and the iterated tensor interaction are monitored via the complex Weinberg eigenvalues. When all eigenvalues lie within the unit circle, the expansion of the scattering amplitude in terms of the interaction is perturbative, with the magnitude of the largest eigenvalue setting the rate of convergence. Major decreases in the magnitudes of repulsive eigenvalues are observed as the Argonne v18, CD-Bonn or Nijmegen potentials are evolved to low momentum, even though two-body observables are unchanged. For chiral EFT potentials, running the cutoff lower tames the impact of the tensor force and of new nonperturbative features entering at N3LO. The efficacy of separable approximations to nuclear interactions derived from the Weinberg analysis is studied as a function of cutoff, and the connection to inverse scattering is demonstrated.Comment: 21 pages, 15 figures, minor additions, to appear in Nucl. Phys.

    Weinberg Eigenvalues and Pairing with Low-Momentum Potentials

    Full text link
    The nonperturbative nature of nucleon-nucleon interactions evolved to low momentum has recently been investigated in free space and at finite density using Weinberg eigenvalues as a diagnostic. This analysis is extended here to the in-medium eigenvalues near the Fermi surface to study pairing. For a fixed value of density and cutoff Lambda, the eigenvalues increase arbitrarily in magnitude close to the Fermi surface, signaling the pairing instability. When using normal-phase propagators, the Weinberg analysis with complex energies becomes a form of stability analysis and the pairing gap can be estimated from the largest attractive eigenvalue. With Nambu-Gorkov Green's functions, the largest attractive eigenvalue goes to unity close to the Fermi surface, indicating the presence of bound states (Cooper pairs), and the corresponding eigenvector leads to the self-consistent gap function.Comment: 16 pages, 9 figure

    Finite Temperature Effective Potential for the Abelian Higgs Model to the Order e4,λ2e^4,\lambda^2

    Full text link
    A complete calculation of the finite temperature effective potential for the abelian Higgs model to the order e4,λ2e^4,\lambda^2 is presented and the result is expressed in terms of physical parameters defined at zero temperature. The absence of a linear term is verified explicitly to the given order and proven to survive to all orders. The first order phase transition has weakened in comparison with lower order calculation, which shows up in a considerable decrease of the surface tension. The only difference from the original version is the splitting of some overlong lines causing problems with certain mailers.Comment: 13 pages LaTex ( figures not included , hardcopy available on request : [email protected] or t00heb@dhhdesy3 ) , DESY 93-08
    • …
    corecore