138 research outputs found

    The Expansion of the Universe and the Cosmological Constant Problem

    Get PDF
    The discovery that the expansion of the universe is accelerating in time is a major discovery which still awaits adequate explanation. It is generally agreed that this implies a cosmic repulsion as a result of the existence of a cosmological constant . However, estimates of the cosmological constant, based on calculations of the zero-point fluctuations of quantum fields are too large by over a hundred orders of magnitude. This result is obtained by summing the zero-point energies up to a large cutoff energy, based on the Planck scale. Since there is no compelling reason for this choice, we argue that since all known quantum electrodynamic (QED) effects involves interaction with matter, a preferred choice should be based on causality and other considerations, leading to a much lower value for the cosmological constant .Comment: Phys. Lett. A, in pres

    Why is CPT fundamental?

    Full text link
    G. L\"uders and W. Pauli proved the CPT\mathcal{CPT} theorem based on Lagrangian quantum field theory almost half a century ago. R. Jost gave a more general proof based on ``axiomatic'' field theory nearly as long ago. The axiomatic point of view has two advantages over the Lagrangian one. First, the axiomatic point of view makes clear why CPT\mathcal{CPT} is fundamental--because it is intimately related to Lorentz invariance. Secondly, the axiomatic proof gives a simple way to calculate the CPT\mathcal{CPT} transform of any relativistic field without calculating C\mathcal{C}, P\mathcal{P} and T\mathcal{T} separately and then multiplying them. The purpose of this pedagogical paper is to ``deaxiomatize'' the CPT\mathcal{CPT} theorem by explaining it in a few simple steps. We use theorems of distribution theory and of several complex variables without proof to make the exposition elementary.Comment: 17 pages, no figure

    Conference Discussion of the Nuclear Force

    Full text link
    Discussion of the nuclear force, lead by a round table consisting of T. Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk by Machleidt, published elsewhere in these proceedings, brief remarks are made by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated by the chair. The chair asked the round table and the participants to focus on the following issues: (i) What does each approach (chiral effective field theory, large Nc, and relativistic phenomenology) contribute to our knowledge of the nuclear force? Do we need them all? Is any one transcendent? (ii) How important for applications (few body, nuclear structure, EMC effect, for example) are precise fits to the NN data below 350 MeV? How precise do these fits have to be? (iii) Can we learn anything about nonperturbative QCD from these studies of the nuclear force? The discussion presented here is based on a video recording made at the conference and transcribed afterward.Comment: Discussion at the 21st European Conference on Few Body Problems (EFP21) held at Salamanca, Spain, 30 Aug - 3 Sept 201

    Is the physical vacuum a preferred frame ?

    Full text link
    It is generally assumed that the physical vacuum of particle physics should be characterized by an energy momentum tensor in such a way to preserve exact Lorentz invariance. On the other hand, if the ground state were characterized by its energy-momentum vector, with zero spatial momentum and a non-zero energy, the vacuum would represent a preferred frame. Since both theoretical approaches have their own good motivations, we propose an experimental test to decide between the two scenarios.Comment: 12 pages, no figure

    On the Wess-Zumino-Witten anomalous functional at finite temperature

    Get PDF
    We discuss the finite temperature extension of the anomalous Wess-Zumino -Witten lagrangian. The finite temperature S^1\times S^3 compactification makes a structure in disconnected sectors, corresponding to different baryon numbers appear naturally. The consistency of the anomalous functional is proved for arbitrary baryon number configurations. The anomalous behavior of the functional is shown to be consistent with the absence of finite temperature corrections to chiral anomalies in QCD, for each baryon number sector.Comment: 16 pages, FT/UCM/9/9

    More on the infrared renormalization group limit cycle in QCD

    Get PDF
    We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. It was conjectured that small increases in the up and down quark masses can move QCD to the critical trajectory for an infrared limit cycle in the three-nucleon system. At the critical quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We exemplify three parameter sets where this effect occurs at next-to-leading order in the chiral counting. For one of them, we study the structure of the three-nucleon system in detail using both chiral and contact effective field theories. Furthermore, we investigate the matching of the chiral and contact theories in the critical region and calculate the influence of the limit cycle on three-nucleon scattering observables.Comment: 17 pages, 7 figures, discussion improved, results unchanged, version to appear in EPJ

    Evaluating chiral symmetry restoration through the use of sum rules

    Full text link
    We pursue the idea of assessing chiral restoration via in-medium modifications of hadronic spectral functions of chiral partners. The usefulness of sum rules in this endeavor is illustrated, focusing on the vector and axial-vector channels. We first present an update on constructing quantitative results for pertinent vacuum spectral functions. These spectral functions serve as a basis upon which the in-medium spectral functions can be constructed. A striking feature of our analysis of the vacuum spectral functions is the need to include excited resonances, dictated by satisfying the Weinberg-type sum rules. This includes excited states in both the vector and axial-vector channels. Preliminary results for the finite temperature vector spectral function are presented. Based on a rho spectral function tested in dilepton data which develops a shoulder at low energies, we find that the rho' peak flattens off. The flattening may be a sign of chiral restoration, though a study of the finite temperature axial-vector spectral function remains to be carried out.Comment: 9 pages, conference proceedings from Resonance Workshop at UT Austin, March 5-7 201

    Charge-conjugation violating neutrino interactions in supernovae

    Get PDF
    The well known charge conjugation violating interactions in the Standard Model increase neutrino- and decrease anti-neutrino- nucleon cross sections. This impacts neutrino transport in core collapse supernovae through "recoil" corrections of order the neutrino energy kk over the nucleon mass MM. All k/Mk/M corrections to neutrino transport deep inside a protoneutron star are calculated from angular integrals of the Boltzmann equation. We find these corrections significantly modify neutrino currents at high temperatures. This produces a large mu and tau number for the protoneutron star and can change the ratio of neutrons to protons. In addition, the relative size of neutrino mean free paths changes. At high temperatures, the electron anti-neutrino mean free path becomes {\it longer} than that for mu or tau neutrinos.Comment: 14 pages, 2 included ps figures, subm. to Phys. Rev.

    String-localized Quantum Fields and Modular Localization

    Full text link
    We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincar\'e group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representation and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting.Comment: minor correction

    Electromagnetic corrections in eta --> 3 pi decays

    Full text link
    We re-evaluate the electromagnetic corrections to eta --> 3 pi decays at next-to-leading order in the chiral expansion, arguing that effects of order e^2(m_u-m_d) disregarded so far are not negligible compared to other contributions of order e^2 times a light quark mass. Despite the appearance of the Coulomb pole in eta --> pi+ pi- pi0 and cusps in eta --> 3 pi0, the overall corrections remain small.Comment: 21 pages, 11 figures; references updated, version published in EPJ
    corecore