13 research outputs found

    Allele-specific copy number analysis of tumors

    Get PDF
    We present an allele-specific copy number analysis of the in vivo breast cancer genome. We describe a unique bioinformatics approach, ASCAT (allele-specific copy number analysis of tumors), to accurately dissect the allele-specific copy number of solid tumors, simultaneously estimating and adjusting for both tumor ploidy and nonaberrant cell admixture. This allows calculation of “ASCAT profiles” (genome-wide allele-specific copy-number profiles) from which gains, losses, copy number-neutral events, and loss of heterozygosity (LOH) can accurately be determined. In an early-stage breast carcinoma series, we observe aneuploidy (>2.7n) in 45% of the cases and an average nonaberrant cell admixture of 49%. By aggregation of ASCAT profiles across our series, we obtain genomic frequency distributions of gains and losses, as well as genome-wide views of LOH and copy number-neutral events in breast cancer. In addition, the ASCAT profiles reveal differences in aberrant tumor cell fraction, ploidy, gains, losses, LOH, and copy number-neutral events between the five previously identified molecular breast cancer subtypes. Basal-like breast carcinomas have a significantly higher frequency of LOH compared with other subtypes, and their ASCAT profiles show large-scale loss of genomic material during tumor development, followed by a whole-genome duplication, resulting in near-triploid genomes. Finally, from the ASCAT profiles, we construct a genome-wide map of allelic skewness in breast cancer, indicating loci where one allele is preferentially lost, whereas the other allele is preferentially gained. We hypothesize that these alternative alleles have a different influence on breast carcinoma development

    HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice.

    Get PDF
    Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia. In non-small cell lung cancer (NSCLC), high HIF2alpha levels correlate with decreased overall survival, and inhibition of either the protein encoded by the canonical HIF target gene VEGF or VEGFR2 improves clinical outcomes. However, whether HIF2alpha is causal in imparting this poor prognosis is unknown. Here, we generated mice that conditionally express both a nondegradable variant of HIF2alpha and a mutant form of Kras (KrasG12D) that induces lung tumors. Mice expressing both Hif2a and KrasG12D in the lungs developed larger tumors and had an increased tumor burden and decreased survival compared with mice expressing only KrasG12D. Additionally, tumors expressing both KrasG12D and Hif2a were more invasive, demonstrated features of epithelial- mesenchymal transition (EMT), and exhibited increased angiogenesis associated with mobilization of circulating endothelial progenitor cells. These results implicate HIF2alpha causally in the pathogenesis of lung cancer in mice, demonstrate in vivo that HIF2alpha can promote expression of markers of EMT, and define HIF2alpha as a promoter of tumor growth and progression in a solid tumor other than renal cell carcinoma. They further suggest a possible causal relationship between HIF2alpha and prognosis in patients with NSCLC

    Differential Pathogenesis of Lung Adenocarcinoma Subtypes Involving Sequence Mutations, Copy Number, Chromosomal Instability, and Methylation

    Get PDF
    Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors.The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n = 504). A novel validation (n = 116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes.The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors.

    No full text
    BACKGROUND: Although numerous mouse models of breast carcinomas have been developed, we do not know the extent to which any faithfully represent clinically significant human phenotypes. To address this need, we characterized mammary tumor gene expression profiles from 13 different murine models using DNA microarrays and compared the resulting data to those from human breast tumors. RESULTS: Unsupervised hierarchical clustering analysis showed that six models (TgWAP-Myc, TgMMTV-Neu, TgMMTV-PyMT, TgWAP-Int3, TgWAP-Tag, and TgC3(1)-Tag) yielded tumors with distinctive and homogeneous expression patterns within each strain. However, in each of four other models (TgWAP-T121, TgMMTV-Wnt1, Brca1Co/Co;TgMMTV-Cre;p53+/- and DMBA-induced), tumors with a variety of histologies and expression profiles developed. In many models, similarities to human breast tumors were recognized, including proliferation and human breast tumor subtype signatures. Significantly, tumors of several models displayed characteristics of human basal-like breast tumors, including two models with induced Brca1 deficiencies. Tumors of other murine models shared features and trended towards significance of gene enrichment with human luminal tumors; however, these murine tumors lacked expression of estrogen receptor (ER) and ER-regulated genes. TgMMTV-Neu tumors did not have a significant gene overlap with the human HER2+/ER- subtype and were more similar to human luminal tumors. CONCLUSION: Many of the defining characteristics of human subtypes were conserved among the mouse models. Although no single mouse model recapitulated all the expression features of a given human subtype, these shared expression features provide a common framework for an improved integration of murine mammary tumor models with human breast tumors

    Genomic Analyses across Six Cancer Types Identify Basal-like Breast Cancer as a Unique Molecular Entity

    Get PDF
    To improve our understanding of the biological relationships among different types of cancer, we have characterized variation in gene expression patterns in a set of 1,707 samples representing 6 human cancer types (breast, ovarian, brain, colorectal, lung adenocarcinoma and squamous cell lung cancer). In the unified dataset, breast tumors of the Basal-like subtype were found to represent a unique molecular entity as any other cancer type, including the rest of breast tumors, while showing striking similarities with squamous cell lung cancers. Moreover, gene signatures tracking various cancer- and stromal-related biological processes such as proliferation, hypoxia and immune activation were found expressed similarly in different proportions of tumors across the various cancer types. These data suggest that clinical trials focusing on tumors with common profiles and/or biomarker expression rather than their tissue of origin are warranted with a special focus on Basal-like breast cancer and squamous cell lung carcinoma

    HIF2α cooperates with RAS to promote lung tumorigenesis in mice

    No full text
    Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia. In non–small cell lung cancer (NSCLC), high HIF2α levels correlate with decreased overall survival, and inhibition of either the protein encoded by the canonical HIF target gene VEGF or VEGFR2 improves clinical outcomes. However, whether HIF2α is causal in imparting this poor prognosis is unknown. Here, we generated mice that conditionally express both a nondegradable variant of HIF2α and a mutant form of Kras (KrasG12D) that induces lung tumors. Mice expressing both Hif2a and KrasG12D in the lungs developed larger tumors and had an increased tumor burden and decreased survival compared with mice expressing only KrasG12D. Additionally, tumors expressing both KrasG12D and Hif2a were more invasive, demonstrated features of epithelial-mesenchymal transition (EMT), and exhibited increased angiogenesis associated with mobilization of circulating endothelial progenitor cells. These results implicate HIF2α causally in the pathogenesis of lung cancer in mice, demonstrate in vivo that HIF2α can promote expression of markers of EMT, and define HIF2α as a promoter of tumor growth and progression in a solid tumor other than renal cell carcinoma. They further suggest a possible causal relationship between HIF2α and prognosis in patients with NSCLC
    corecore