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We present an allele-specific copy number analysis of the in vivo
breast cancer genome. We describe a unique bioinformatics ap-
proach, ASCAT (allele-specific copy number analysis of tumors), to
accurately dissect the allele-specific copy number of solid tumors,
simultaneously estimating and adjusting for both tumor ploidy
and nonaberrant cell admixture. This allows calculation of “ASCAT
profiles” (genome-wide allele-specific copy-number profiles) from
which gains, losses, copy number-neutral events, and loss of hetero-
zygosity (LOH) canaccurately bedetermined. In anearly-stagebreast
carcinoma series, we observe aneuploidy (>2.7n) in 45%of the cases
and an average nonaberrant cell admixture of 49%. By aggregation
of ASCAT profiles across our series, we obtain genomic frequency
distributions of gains and losses, as well as genome-wide views of
LOH and copy number-neutral events in breast cancer. In addition,
the ASCAT profiles reveal differences in aberrant tumor cell fraction,
ploidy, gains, losses, LOH, and copy number-neutral events between
the five previously identified molecular breast cancer subtypes.
Basal-like breast carcinomas have a significantly higher frequency
of LOH compared with other subtypes, and their ASCAT profiles
show large-scale loss of genomic material during tumor develop-
ment, followed by a whole-genome duplication, resulting in near-
triploid genomes. Finally, from the ASCAT profiles, we construct
a genome-wide map of allelic skewness in breast cancer, indicating
loci where one allele is preferentially lost, whereas the other allele is
preferentially gained. We hypothesize that these alternative alleles
have a different influence on breast carcinoma development.

breast carcinoma | single-nucleotide polymorphism arrays |
bioinformatics | cancer

Genomic changes are key causative events of cancer. Cancer
genomes are characterized by numerous sequence changes

compared with their normal host counterparts, ranging in size
from single base changes (point mutations) to insertions or
deletions of large chromosomal fragments and even whole-ge-
nome duplications (1, 2). These cancer genomes have been ex-
tensively charted by array-comparative genomic hybridization
(CGH), SNP arrays (3, 4), and more recently by whole-genome
sequencing (5–8). However, correct assembly and interpretation
of the data have proven difficult, because tumors often deviate
from a diploid state (9, 10), and many contain multiple pop-
ulations of both tumor and nontumor cells (11, 12). For these
reasons, most studies have been limited to reporting gains and
losses (array CGH), possibly supplemented by allelic imbalances
(SNP arrays), and are unable to assign correct (allele-specific)
copy numbers to all loci in the reference genome. Similarly, for
correct assembly of complete cancer genomes from sequencing
data, the calculation of accurate copy numbers for all loci is
a necessary first step for correct interpretation of changes ranging
from point mutations to large-scale genomic rearrangements.
We present here an allele-specific copy number analysis of the

in vivo breast cancer genome, in which both aneuploidy of the
tumor cells and nonaberrant cell infiltration are taken into ac-

count. We obtain accurate genome-wide allele-specific copy-
number profiles [called “ASCAT (allele-specific copy number
analysis of tumors) profiles”] for 91 of 112 breast carcinomas
assayed. On the basis of these ASCAT profiles, differences in
aberrant tumor cell fraction, ploidy, gains, losses, loss of hetero-
zygosity (LOH), and copy number-neutral events are revealed
among the five previously identified molecular breast cancer
subtypes. Finally, by evaluating the relative frequency of deletions
and duplications of the two possible alleles at each SNP locus, we
construct a genome-wide map of allelic skewness, pointing to
candidate genes/loci that may drive breast cancer development.

Results
Allele-Specific Copy Number Analysis of Breast Carcinomas. We per-
formed genotyping of 112 breast carcinoma samples using Illu-
mina 109K SNP arrays and constructed an algorithm (ASCAT)
to estimate the fraction of aberrant cells and the tumor ploidy, as
well as whole-genome allele-specific copy number profiles taking
both properties into account (Fig. 1 and Figs. S1 and S2). Using
ASCAT, we obtained genome-wide allele-specific copy number
profiles (hereafter called ASCAT profiles) for 91 (81%) of the
breast carcinomas. Most of the 21 cases (19%) for which ASCAT
indicated that no acceptable solution could be found were
characterized by significantly larger residual variance in the Log
R profiles (Fig. S3). Hence, ASCAT is able to calculate the al-
lele-specific copy numbers of all assayed SNP loci, taking into
account tumor aneuploidy and the fraction of aberrant tumor
cells, for most of our breast carcinoma cases, and indicates when
the quality of the input data are questionable.
We validated the ASCAT profile predictions in three ways.

First, we checked ASCAT’s consistency and sensitivity to a vary-
ing percentage of aberrant tumor cells by applying the algorithm
to a dilution series of a tumor sample mixed with different pro-
portions of its germline DNA. Overall, ASCAT profiles were very
similar for the different dilutions (Fig. S4). Second, we validated
ASCAT’s ploidy predictions by experimentally determining the
amount of DNA in the tumor cells for 79 of the 91 scored breast
cancer cases. We obtained good correspondence with ASCAT’s
predictions (Fig. 2 and Fig. S5). Finally, FISH experiments were
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performed on 11 of the breast carcinomas for three loci (Table
S1), suggesting a good correspondence with the copy numbers
estimated by ASCAT, although FISH seems to consistently un-
derestimate the copy number as compared with ASCAT. To-
gether, these validation experiments confirm that ASCAT
accurately predicts ASCAT profiles over a broad range of tumor
ploidy and fraction of aberrant tumor cells.

Ploidy and Fraction of Aberrant Tumor Cells in Breast Carcinoma. To
investigate the relevance of aneuploidy and involvement of non-
aberrant cells in breast carcinoma, we examined the ploidy and
aberrant cell fraction estimates for our breast carcinoma series.
Because the tumor samples were macrodissected to remove as
much as possible of the surrounding nontumor tissue by a pathol-
ogist, the aberrant cell fraction estimates will reflect intratumoral
nonaberrant cells and not normal cells surrounding the tumor.We
found that the tumors are on average infiltrated with 49% non-
aberrant cells and that 45%of them have a ploidy of 2.7n or higher.
These results confirm the importance of taking both nonaberrant
cell admixture and tumor aneuploidy into account.
Breast carcinomas can be divided into five distinct subtypes,

depending on their expression pattern of 561 transcripts (13).
These five subgroups, Luminal A, Luminal B, ERBB2, Basal-like,
and Normal-like breast carcinoma, are associated with different
clinical outcomes (14). We correlated our ploidy and aberrant cell
fraction estimates with these gene-expression–based breast can-
cer subtypes. Stratifying the estimated percentages of aberrant
cells by breast cancer subtype revealed considerable differences
(Fig. 3A), with the highest fraction of aberrant tumor cells for the
Luminal A subtype and the lowest fraction for the ERBB2 and

Normal-like subtypes. An evaluation of tumor ploidy stratified by
molecular subtype showed lowest ploidy for Luminal A, Basal-
like, and Normal-like subtypes and highest ploidy for the ERBB2
subtype (Fig. 3B). For the Luminal A subtype, the specific ploidy
distribution along with its characteristic paucity of aberrations
(and preference for aberrations involving whole chromosome
arms) implies a common state of diploidy for these tumors, with
a minority of Luminal A carcinomas having undergone poly-
ploidization by endoreduplication (with only few additional aber-
rations), resulting in a tetraploid state.

ASCAT Profiles Allow Accurate Dissection of Gains, Losses, LOH, and
Copy Number-Neutral Events and Grant Insight into Tumor Develop-
ment. The frequency of gains and losses in a population can be
deduced from ASCAT profiles. In our breast carcinoma series,
this resulted in similar but slightly more pronounced patterns
compared with previous (array-CGH) reports (15–17) (Fig.
S6A). However, stratification by molecular subtype resulted in
considerably higher frequencies of gains and losses specifically
for the ERBB2 and the Normal-like subtypes than those directly
derived from Log R data (Fig. S6B). Hence, contrary to previous
reports describing only a limited number of aberrations for these
two subtypes (15–17), the use of ASCAT profiles results in clear
gains and losses. These aberrations were missed by earlier
approaches owing to the high fractions of nonaberrant cells in
the ERBB2 and Normal-like subtypes (Fig. 3A), a feature taken
into account when using ASCAT profiles.
The ASCAT profiles also allow us to investigate LOH and copy

number-neutral events. This is not possible using direct evaluation
of SNP array data from tumor samples, owing to the admixture

Fig. 1. ASCAT profiles and their calculation. Two examples are given: (A) a tumor with ploidy close to 2n and (B) a tumor with ploidy close to 4n. (Left) ASCAT
first determines the ploidy of the tumor cells ψt and the fraction of aberrant cells ρ. This procedure evaluates the goodness of fit for a grid of possible values
for both parameters (blue, good solution; red, bad solution; detailed in Materials and Methods). On the basis of this goodness of fit, the optimal solution is
selected (green cross). Using the resulting tumor ploidy and aberrant cell fraction, an ASCAT profile is calculated (Upper Right), containing the allele-specific
copy number of all assayed loci [copy number on the y axis vs. the genomic location on the x axis; green, allele with lowest copy number; red, allele with
highest copy number; for illustrative purposes only, both lines are slightly shifted (red, down; green, up) such that they do not overlap; only probes het-
erozygous in the germline are shown]. Finally, for all aberrations found, an aberration reliability score is calculated (Lower Right).
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with cells not showing these events. A distinct pattern of LOH
across the genome emerges (Fig. 4A), with LOH being most fre-
quent on chromosome arms 8p, 11q, 16q, and 17p. The q arm of
chromosome 16 shows the highest fraction of LOH, including
among others SNPs residing in multiple members of the cadherin
family (e.g., CDH1, CDH3, CDH15, CDH13, and CDH8). A cal-
culation of the frequency of copy number-neutral events reveals
many regions with a frequency above 20%, with some peaks up to
50% (Fig. 4B). We define here a copy number-neutral event as an
allelic bias for an SNP heterozygous in the germline such that the
total copy number does not differ from the tumor ploidy. Fol-
lowing this definition, copy number-neutral events are all genomic
aberrations that cannot be detected by array-CGH. We observe
that many genomic regions with higher frequency of loss were also
more likely to harbor copy number-neutral events. This is partic-
ularly apparent for chromosome/chromosome arm 1p, 2, 3, 4q, 9q,
15, and 19p. This suggests that the frequency of actual loss (loss of
one allele, possibly combined with gain of the other allele) is
considerably higher than what was previously reported (consider-
ing only the total amount of DNA, not distinguishing both alleles).
Also notable is chromosome 17q, showing both a high frequency of
gains and elevated levels of copy number-neutral events. This
chromosome arm harbors among others the ERBB2 gene, a gene
renowned for its relevance in breast cancer. The overall highest
frequencies of copy number-neutral events were seen for chro-
mosome 2, 3, 4, 6, 12, and 15, chromosomes not previously
reported as key areas for genomic aberrations in breast cancers,
suggesting that copy number-neutral events may represent an as-
yet unexplored picture of genomic aberrations in breast cancer.
Stratification of genome-wide LOH and copy number-neutral

event profiles by breast cancer subtype reveals hitherto unknown
differences (Fig. 4 C and D). A considerably higher frequency of
LOH specifically in the Basal-like subtype is immediately ap-
parent (P = 1.0 × 10−3 by an unpaired t test with unequal vari-
ance, testing for differences between Basal-like carcinomas and
all other carcinomas). This observation, combined with the

particular ploidy range of the Basal-like breast carcinomas (Fig.
3B), makes us hypothesize that the genomes of Basal-like tumors
initially are reduced from a diploid to a partial haploid state
(around 1.5n) and subsequently undergo a whole-genome du-
plication resulting in a ploidy around 3n (Fig. S7).

Alleles Preferentially Gained or Lost in Breast Carcinoma. The
ASCAT profiles of our series of 91 breast carcinomas allow us to
create a genome-wide map of alleles preferentially gained or lost
(Fig. 5). If for a certain SNP the most commonly lost allele is the B
allele, whereas the A allele is preferentially kept (or gained), the
A allele likely provides a relative advantage for the breast carci-
nomas. For example, the SNP rs6575883 within the PPP2R5C
gene on 14q32.31 is germline heterozygous in 30 of the cases.
Fifteen of those have a loss, all losing the B allele. In addition,
there are four gains, all of the A allele, and two copy number-
neutral events, both showing gain of A and loss of B. All these
observations point to a skewness in the loss/gain of the two al-
ternative alleles and suggest a relative advantage of the A allele
and disadvantage of the B allele acting during breast carcinoma
development. A statistical evaluation (Fig. S8) resulted in P =
9.5 × 10−7. Hence, despite the relatively limited size of our dataset
(further complicated by the fact that for each SNP only hetero-
zygous cases could be evaluated for this analysis), we were able
to identify probes with highly significant allelic skewness in a
genome-wide statistical evaluation. This confirms that at least part
of the allelic skewness shown in Fig. 5 is likely due to selection,
suggesting that loci subject to allelic skewness are potential
unique markers for breast cancer development.

Discussion
Since the initial report in 1992 describing CGH (18), and the
later adaptation to array technology (19–21), CGH has estab-
lished itself as the de facto standard for detection of chromo-
somal aberrations in tumors. However, more than a decade later,
it remains difficult to determine accurate genome-wide copy
number profiles of tumors from these high-throughput arrays.
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Fig. 2. Validation of tumor ploidy predicted by ASCAT. ASCAT’s ploidy
estimates are plotted relative to experimentally measured ploidy. Here we
define ploidy as the amount of DNA relative to a haploid genome. For 58 of
the 79 assayed samples (73.4%), ASCAT’s ploidy predictions correspond well
with the experimentally determined ploidy (green triangles close to the di-
agonal). Three samples (3.8%) have an experimentally determined ploidy
larger than 5n (blue triangles), outside of the ploidy range used by ASCAT
(1.6n–4.8n, depicted by the blue square). Ten breast carcinomas (12.7%) have
a predicted ploidy close to 2n, whereas the experimentally determined ploidy
was close to 4n (pink triangles). For most of these cases, manual inspection of
the copy number profiles could not reveal any indications (missed by ASCAT)
that these samples are in fact close to tetraploid (Fig. S5A). Indeed, cases that
are tetraploid but only show even-numbered allele-specific copy numbers
would be recognized as diploid, because the SNP array data do not provide
any information to distinguish such tetraploid samples from diploid samples.
Alternatively, the experimental method for ploidy determination, applied to
a different part of the tumor as the SNP arrays, could be measuring tumor
cells in the S phase of the cell cycle, or a different subclone of the tumor. Fi-
nally, eight samples (10.1%) show clearly higher ploidy by ASCAT prediction
compared with the experimentally determined ploidy (red triangles). A pos-
sible explanation for this is the presence of multiple populations of aberrant
tumor cells with (slightly) different aberrations (Fig. S5B).

A B

Fig. 3. Percentage of aberrant tumor cells and ploidy across the five breast
cancer subtypes. Molecular subtypes used: LumA, Luminal A (n = 45); LumB,
Luminal B (n = 10); ERBB2 (n = 12); Basal, Basal-like (n = 12); Normal, Normal-like
(n = 8). (A) Distribution of percentage of aberrant tumor cells across the five
subtypes. The box plots show themedian (thick lines) and the lower and upper
quartile (boxes). The whiskers reach up to the most extreme value within 1.5
times the interquartile range from the box. Whereas Luminal A carcinomas
harbored the highest levels of aberrant tumor cells (P = 6.9 × 10−6, unpaired t
test with unequal variance, testing for differences between the Luminal A
subtype and all other carcinomas), tumors of the ERBB2 and Normal-like sub-
type displayed the lowest fraction of aberrant cells (P = 3.7 × 10−4 and P = 8.4 ×
10−3, respectively). (B) Distribution of ploidy across the five subtypes. The vast
majority of Luminal A tumors showed a ploidy close to 2n, with a smaller
fraction showing a ploidy close to 4n. Carcinomas of the Luminal B subtype
wereapproximately equally dividedamong2nand4n tumors,with two tumors
being 3n.Onaverage, the ERBB2 subgroupdisplayed thehighest level of ploidy
but also the broadest range. The Basal-like subgroup showed cases with
a ploidy 1.6n–2n and cases of 2.8n–3.2n. Normal-like tumors showed a groupof
cases with ploidy close to 2n and a group of cases with ploidy above 3n.
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Complicating factors are that tumor cells are often aneuploid (9,
10) and that tumor samples contain multiple populations of both
tumor and nontumor cells (11, 12). Although some studies aim
to bring these effects into the equation (22, 23), these difficulties
still remain today. In addition to these limitations, array-CGH
provides no information regarding which of the two alternative
alleles has been gained or lost, and it overlooks copy number-
neutral aberrations.
The introduction of SNP array technology (24, 25) holds the

promise to solve these issues, because allele-specific measure-
ments allow estimation of the amount of aberrant and non-
aberrant cells in a specimen and clearly show deviations from
diploidy. Recently, a number of computational methods have
been developed that aim to take into account either tumor an-
euploidy or infiltration of nontumoral cells (26–31). However, to
calculate correct genome-wide allele-specific copy numbers from
SNP array data of nonmicrodissected tumor samples, both these
effects need to be modeled simultaneously.
We developed a unique algorithm, ASCAT, to infer ASCAT

profiles (accurate genome-wide allele-specific copy number
profiles) from SNP array data, estimating and correcting for both
tumor cell aneuploidy and nonaberrant cell admixture. We val-
idated ASCAT’s copy number predictions by FISH, its sensitivity
to increasing nonaberrant cell involvement by application to
a dilution series of a tumor sample, and its ploidy predictions by
experimental ploidy measurements.
The dissection of cancer genomes is taken to the next step by

the recent introduction of cancer genome sequencing (5–8). We
believe ASCAT profiles could be useful tools for interpretation
of these data, aiding in the assembly of the data and in the
identification of changes varying in size from point mutations to
complex rearrangements.
The distribution of ploidy and aberrant cell fraction across our

early-stage breast carcinoma series (Fig. 3) suggests that analysis

methods not taking both ploidy and nonaberrant cell infiltration
into account will misinterpret at least 50% of the cases. This may
lead to underestimation of the number of aberrations in tumors
showing high nonaberrant cell admixture (as observed in ERBB2
and Normal-like breast carcinomas) or to misinterpretation of
nearly all aberrations in aneuploid tumors.
ASCAT profiles allow identification of LOH and copy number-

neutral events, invisible to array-CGH (and misinterpreted by
SNP array methods not correcting for both aneuploidy and non-
aberrant cell infiltration). The genomic distribution of LOH (Fig.
4A) corresponds very well with that of losses (Fig. S6A). This is in
large part becausemany losses also result in loss of heterozygosity.
Unexpectedly, however, there were also correspondences be-
tween losses and copy number-neutral events (two entirely dis-
tinct classes of aberrations), suggesting that the frequency of loss
of one allele (possibly combined with gain of the other allele) is
considerably higher than previously reported.
We identify characteristic differences in tumor ploidy, non-

aberrant cell admixture, and frequency of gains, losses, LOH,
and copy number-neutral events among the five molecularly
defined breast cancer subtypes, many of which were previously
unknown. These findings confirm the added value of our ap-
proach and at the same time support the hypothesis that these
molecular subtypes are distinct biological entities. For example,
we find a high fraction of nonaberrant cells in the ERBB2 and
Normal-like subtypes (Fig. 3A), two tumor subtypes for which
previous reports described only a limited number of aberrations
(15–17). The correction for nonaberrant cell involvement shows
that these tumors in fact do not harbor fewer aberrations than
the other subtypes (Fig. S6B) but rather that these aberrations
were missed by earlier approaches not adjusting for nonaberrant
cell involvement. The ERBB2 gene is an important tumor anti-
gen for the induction of CD8+-mediated T-cell responses in
breast carcinomas, and patients carrying tumors overexpressing

A

B

C D

Fig. 4. Frequency of LOH and copy num-
ber-neutral events. (A) Frequency of LOH
across the genome. Probes are shown in
genomic order along the x axis, from
chromosome 1 to chromosome X, where
different chromosomes are delimited by
gray lines. (B) Frequency of copy number-
neutral events across the genome. For
diploid tumors, copy number-neutral
events correspond to a subset of LOH (copy
number-neutral LOH), but for, for exam-
ple, tetraploid tumors, a copy number-
neutral event can also be three copies of A
and one copy of B. (C ) Proportion of LOH
per case (percentage of probes heterozy-
gous in the germline that have lost this
heterozygosity in the tumor), stratified by
molecular breast cancer subtypes. Molec-
ular subtypes used and box plot legends
are the same as in Fig. 3. The Luminal A
subtype shows a significantly lower fre-
quency of LOH compared with the four
other subtypes (P = 2.3 × 10−6, unpaired t
test with unequal variance). Even more
striking is the elevated level of LOH for the
Basal-like subtype (P = 1.0 × 10−3). Indeed,
two thirds of the Basal-like tumors show
LOH at more than 40% of the loci hetero-
zygous in the germline. (D) Proportion
of copy number-neutral events per case,
stratified by molecular breast cancer sub-
types. The Luminal A (P = 4.7 × 10−3, un-
paired t test with unequal variance, testing
for differences between the Luminal A
subtype and all other carcinomas) and
Normal-like (P = 0.95) subtype display low
levels of copy number-neutral events, the Luminal B subgroup shows intermediate levels (P = 0.99), and the Basal-like (P = 0.043) and ERBB2 subtypes (P =
0.064) show the highest frequencies of copy number-neutral events.
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this growth factor receptor are often mounting immune re-
sponses to ERBB2-derived peptides (32). Hence, the attrac-
tion of T cells may at least in part explain the higher fraction of
nonaberrant cells in tumors of the ERBB2 subtype.
Our findings also allow insight into tumor development. Lu-

minal A breast carcinomas are typically diploid, showing only
a limited number of aberrations (mostly affecting entire chro-
mosome arms). A minority of them have become tetraploid by
endoreduplication, with very few additional aberrations. Breast
carcinomas of the Basal-like subtype in contrast show numerous
aberrations, with most chromosomes affected. There are con-
siderably more losses than gains, resulting in a ploidy of 1.6n to
2n. In a later stage, some of these tumors undergo a whole-ge-
nome duplication. We hypothesize that these partially haploid
genomes become unstable (at around 1.5n), resulting in a selec-
tion for more stable triploid genomes. The ASCAT profiles of
these triploid basal-like carcinomas, displaying extensive LOH,
confirm that this whole-genome duplication occurs late in tumor
development, after the tumor genome has acquired a large
number of aberrations (Fig. S7).
Finally, we construct a genome-wide map of allelic skewness,

indicating loci where one allele is preferentially lost whereas the
other allele is preferentially gained. We hypothesize that these
alternative alleles have a different effect on breast carcinoma
development, with the allele preferentially gained showing
a beneficial effect on the breast carcinoma, compared with the
allele preferentially lost. Interestingly, the gene containing the
SNP showing the most extreme allelic skewness (21 aberrations,
all pointing to preferential gain of A and preferential loss of B),
PPP2R5C (PP2A, B subunit, B56γ isoform), has been shown to
mediate DNA-damage induced dephosphorylation of p53 (33),

and as part of the heterotrimeric complex PP2A may play an
important tumor suppressive role in multiple cancers, including
breast cancer (34, 35).

Materials and Methods
Breast Carcinoma Series. The study population of early-stage breast carci-
nomas has been described previously (16, 36). It consists of 112 blood-tumor
pairs. A part of each of the surgically removed tumor specimens was frozen
directly at −80 °C and stored. The frozen tumors were then macrodissected
by a pathologist. Two frozen sections from each were examined by micro-
scope to secure representative tumor tissue before DNA extraction. The
blood DNA was isolated from the lymphocyte fraction of peripheral blood.
Both were analyzed using the Human-1 109K BeadChip SNP array platform
(Illumina). A more detailed description can be found in our earlier study (16).
Because these were all breast cancers from female patients, the SNP array
data for chromosome Y was not used, leaving 109,302 SNPs in total.

Although multiple methods have been developed to perform molecular
breast cancer subtyping (37, 38), in this study we opted to use the same
subtypes as in our previous study (16, 36), for easier comparison.

ASCAT Algorithm. Illumina SNP arrays deliver two output tracks: Log R,
a measure of total signal intensity, and B allele frequency (BAF), a measure of
allelic contrast (25). The Log R track is similar to the output given by common
array-CGH platforms and quantifies the (total) copy number of each geno-
mic locus. The BAF track shows the relative presence of each of the two
alternative nucleotides (called “A” and “B”) at each SNP locus profiled.

Two recurrent phenomena complicate the analysis of genotype profiles of
cancer samples and occurred frequently in our series as well: infiltration of
nonaberrant cells and aneuploidy of tumor cells (Fig. S1). We express the Log
R and BAF data (r and b, respectively) as a function of the allele-specific copy
number (nA,i and nB,i), accounting for nonaberrant cell infiltration and tu-
mor aneuploidy (SI Materials and Methods for details):

ri ¼ γlog2

�
2
�
1− ρ

�þ ρ
�
nA;i þ nB;i

�
ψ

�
[1]

bi ¼ 1− ρþ ρnB;i
2− 2ρþ ρ

�
nA;i þ nB;i

� [2]

In Eqs. 1 and 2, i represents the genomic location, and γ is a constant
depending on the SNP array technology used. The average ploidy of the
sample is modeled by ψ = 2(1 − ρ) + ρψt, with ψt the tumor ploidy (ranging
from 1.6 to 4.8, correspondingwith a tumor ploidy range of 1.6n to 4.8n). The
aberrant cell fraction of a sample is modeled by ρ, a value between 0 and 1.
The parameter γ can be obtained from the literature (25) (it is the drop in
Log R in case of a deletion in a 100% pure sample), whereas ρ and ψt need to
be estimated from the data for each tumor sample separately. On the basis
of these equations, we can express the allele-specific copy number estimates
as a function of the data and the parameters (SI Materials and Methods).

To make our method less sensitive to noise in the input data, both Log R
and BAF are preprocessed by a specially designed segmentation and filtering
algorithm, Allele-Specific Piecewise Constant Fitting (ASPCF) (SI Materials and
Methods for details). First, probes for which the germline DNA is homozy-
gous (i.e., probes in the BAF bands at heights 0 and 1) are removed from the
BAF track, because they are uninformative for determination of the total
copy number. Because our breast carcinoma series consisted of blood and
tumor pairs, we used the genotypes generated from the blood samples to
eliminate the probes homozygous in the germline (Fig. S2A). ASPCF then fits
piecewise constant functions simultaneously to the Log R and BAF data,
requiring change points to appear at the same genomic locations in the
two fitted functions (Fig. S2B). As a result, a segmentation of the genome is
obtained, each segment corresponding to a genomic region between two
adjacent change points (or between a change point and the start/end of
a chromosome arm). For Log R, a single fitted value is obtained for each
segment, whereas for BAF the output from ASPCF may consist of either one
or two values per segment. These values are symmetric around 0.5. If the
aberrant cells are found to be balanced (equal number of As and Bs), only
one value, 0.5, is returned. If the aberrant cells show an allelic bias, it will be
present in both directions (e.g., SNPs with ABB and AAB genotype will both
be present), resulting in two values symmetric around 0.5 being output from
ASPCF (Fig. S2B).

These ASPCF-smoothed data are subsequently used as input of our ASCAT
algorithm (implemented in R), to estimate the parameters ρ (aberrant cell
fraction) and ψt (tumor ploidy), as well as the absolute allele-specific copy

Fig. 5. Genome-wide map of allelic skewness. SNPs that show no allelic
skewness (no allele is preferentially gained or lost) should show approxi-
mately equal frequencies of loss and gain for both alleles. Here, the fre-
quency of the most frequently gained/lost allele is shown. Alleles without
allelic skewness should have a frequency of 50% (blue), whereas alleles that
are completely skewed have a frequency of 100% (red). For each SNP, we
selected the cases from our series that are germline heterozygous. We count
how many cases show gains (of A vs. of B), losses (of A vs. of B), and copy
number-neutral events (with gain of A and loss of B vs. with gain of B and
loss of A). We combined the counts for gain of A, loss of B, and copy number-
neutral events with gain of A and loss of B, and the counts for gain of B, loss
of A, and copy number-neutral events with gain of B and loss of A, and
display the frequency of the most frequently skewed allele. Only probes with
a total of at least 10 gains, losses, and copy number-neutral events are
shown. Gene symbols shown contain at least one SNP with a most frequently
gained/lost allele frequency of 95% or more.
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number calls (bnA;i and bnB;i). Using the fact that true copy numbers are
nonnegative whole numbers, we seek values for ρ and ψt such that the
allele-specific copy number estimates are as close as possible to nonnegative
whole numbers for germline heterozygous SNPs. Optimal values for ρ and ψt

were estimated as follows:

(i) Genome-wide allele-specific copy number profiles were calculated for
a grid of ρ (0.10, 0.11, . . ., 1.05) and ψt values (1.00, 1.05, . . ., 5.40)

(ii) for each parameter value combination, the total distance to a nonneg-
ative whole-number solution for the genome-wide allele-specific copy
number profiles was calculated and summed over all SNPs (Eq. 3).

dðρ;ψtÞ ¼∑
i
wi

��bnA;iðρ;ψtÞ− roundðbnA;iðρ;ψtÞÞ
�2

þ �bnB;iðρ;ψtÞ− roundðbnB;iðρ;ψ tÞÞ
�2�

[3]

Here, the round() function rounds to the nearest nonnegative whole
number. The weight wi = 1 for probes in segments with allelic bias
(BAF ≠ 0.5), and wi = 0.05 for probes in segments without allelic bias
(BAF = 0.5), because the former were deemed more likely aber-
rant segments.

(iii) All local minima were determined and were considered as possible
interpretations of the data. For each possible interpretation, a good-
ness-of-fit score is calculated. This goodness-of-fit g is calculated as
a linear rescaling of the total distance to nonnegative whole numbers
to a percentage: g = 100%when d = 0 and g = 0 when d = the distance
obtained when the allele-specific copy numbers for each SNP differ
0.25 from nonnegative whole numbers (d ¼ ∑

i
wið2·0:252Þ). The value

0.25 was selected as a reasonable maximum distance (averaged over
all probes), taking into consideration the fact that this goodness-of-fit
is calculated only for local minima.

(iv) Local minima corresponding to unlikely interpretations are automati-
cally excluded by ASCAT: (1) solutions with ploidy (calculated as the
average total copy number) outside a user-defined range (1.6n–4.8n),
(2) solutions with a too-low percentage of aberrant tumor cells (ρ <

0.20), (3) “floating” solutions—solutions that show genomic aberra-
tions but that do not show any SNPswith copy number 0 of either allele
(by this criterion, ASCAT avoids interpretations with higher ploidy
when there is no evidence of higher ploidy), and (4) solutions with
a goodness-of-fit below 80%.

(v) If one candidate solution remains, then this solution is reported. If
multiple solutions remain, these are ranked according to their good-
ness of fit, and the highest ranking solution is reported. For the
reported solution, ASCAT returns the percentage of aberrant tumor
cells, the tumor ploidy (calculated as the average total copy number),
the goodness of fit, and the whole-genome allele-specific copy num-
ber profile of the tumor (ASCAT profile), as well as an aberration
reliability score for each aberration found (SI Materials and Methods
for details).

Software and Data Availability. The ASCAT and ASPCF software, the SNP array
data, and the allelic skewness data are available at http://www.ifi.uio.no/
bioinf/Projects/ASCAT.
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