22 research outputs found

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world

    ProstaglandinJ2Prostaglandin-J_{2} upregulates expression of matrix metalloproteinase-1 independently of activation of peroxisome proliferator-activated receptorγreceptor-\gamma

    Get PDF
    Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-inducible nuclear receptor that functions as a transcription factor involved in lipid metabolism, inflammatory response and angiogenesis. The most potent endogenous PPARγ activator is 15-deoxy-Δ12,14prostaglandin-J2 (15d-PGJ2), whereas synthetic ligands include the oral antidiabetic drugs thiazolidinediones (TZDs). Activation of PPARγ was reported to decrease the synthesis of matrix metalloproteinases (MMPs) in vascular smooth muscle cells and macrophages. We aimed to investigate the effect of PPARγ ligands on expression of MMP-1 and urokinase plasminogen activator (uPA) in human microvascular endothelial cells (HMEC-1). We found that treatment of HMEC-1 with 15d-PGJ2 increased the synthesis of MMP-1 protein up to 168% comparing to untreated cells. TZDs (ciglitazone and troglitazone), more potent activators of PPARγ in HMEC-1, did not influence MMP-1 production, arguing against the involvement of PPARγ in this process. Importantly, the stimulatory effect of 15d-PGJ2 was reversed by the antioxidant N-acetyl-cysteine (NAC), suggesting a contribution of oxidative stress. We demonstrated also that 15d-PGJ2 did not change the activity of MMP-1 promoter, but increased the stability of MMP-1 mRNA. In contrast, 15d-PGJ2 very potently inhibited the synthesis of uPA. This effect was in part mimicked by ciglitazone and troglitazone implying an involvement of PPARγ. Accordingly, NAC did not modify the inhibitory effect of 15d-PGJ2 on uPA expression. In conclusion, we postulate that 15d-PGJ2 may differently regulate the synthesis of proteases involved in angiogenesis : it upregulates MMP-1 expression in HMEC-1 through induction of oxidative stress, and inhibits uPA synthesis partly by activation of PPARγ

    Predicting Transfusion Requirements During Extracorporeal Membrane Oxygenation

    Get PDF
    ObjectivePatients requiring extracorporeal membrane oxygenation (ECMO) have a well-known bleeding risk and the potential for experiencing possibly fatal thromboembolic complications. Risk factors and predictors of transfusion requirements during ECMO support remain uncertain. The authors hypothesized that compromised organ function immediately before ECMO support will influence transfusion requirements.DesignA prospective observational study.SettingA tertiary, single-institutional university hospital.ParticipantsThe study included 40 adult patients requiring ECMO for intractable cardiac and respiratory failure between July 2010 and December 2012. Blood samples were taken before initiation of ECMO (baseline), after 24 and 48 hours on ECMO, and 24 hours after termination of ECMO.InterventionsNone.Measurements and Main ResultsIndependent of veno-arterial or veno-venous support, 26% of patients required≥2 packed red blood cells per day (PRBC/d) and 74% of patients required<2 PRBC/d during ECMO. Requirements of≥2 PRBC/d during ECMO support were associated with higher creatinine levels and lower prothrombin times (PT, %) at baseline and with impaired platelet function after 24 hours on ECMO. Platelet function, activated by thrombin receptor-activating peptide stimulation, decreased by 30% to 40% over time on ECMO. Receiver operating characteristic curve analysis showed cut-off values for creatinine of 1.49 mg/dL (sensitivity 70%, specificity 70%; area under the curve [AUC] 0.76, 95% confidence interval [CI] 0.58-0.94), for PT of 48% (sensitivity 80%, specificity 59%; AUC 0.69, 95% CI 0.50-0.87), and for thrombin receptor-activating peptide (TRAP) 32 U (sensitivity 90%, specificity 68%; AUC 0.76, 95% CI 0.59-0.93).ConclusionsThe results of this study demonstrated that increased creatinine levels and lower PT before ECMO and secondary impaired platelet function significantly increased transfusion requirement

    ARTICLE IN PRESS Inosine 5V-monophosphate dehydrogenase inhibition by mycophenolic acid impairs maturation and function of dendritic cells

    No full text
    Abstract Background: The mechanism of action of mycophenolic acid (MPA) has been described as a blockade of inosine 5V -monophosphate dehydrogenase (IMPDH) and is thought to selectively influence T-and B-lymphocytes due to their strong dependency on guanine nucleotides synthesized via the de novo purine synthesis pathway. Recent evidence suggests MPA to affect antigenpresenting cells. Methods: Using CD14 + derived human dendritic cells (DC) we have investigated the effects of MPA on differentiation, maturation and function and studied intracellular nucleotide content and IMPDH activity. Results: GTP content and IMPDH activities of DC were strongly and dose-dependently decreased when MPA was present during the entire culture period or was added after the fifth (immature DC) or the seventh (mature DC) day of culture. Concurrent to low GTP levels, a dose-dependent reduction in the expression of CD80, CD86, CD40, CD54 and CD83 was seen which was accompanied by a decreased capacity of DC to stimulate T-cells. Our data for the first time shows a direct effect of MPA on the maturation and function of human CD14 + derived DC, indicates a role of IMPDH and a dependency on the de novo purine synthesis pathway.

    Effects of 15dPGJ215d-PGJ_{2} on VEGF-induced angiogenic activities and expression of VEGF receptors in endothelial cells

    No full text
    15-deoxy-(12,14)Δ-prostaglandin-J(2) (15d-PGJ(2)) upregulates expression of vascular endothelial growth factor (VEGF), but may inhibit angiogenesis. We found that 15d-PGJ(2) (1-10 μM) attenuated all VEGF-induced angiogenic activities in human umbilical vein endothelial cells (HUVEC). It blocked almost completely cell proliferation, potently reduced migration, assembly into tube-like network on matrigel, and growth of capillaries into collagen gel. 15d-PGJ(2) inhibited expression of VEGFR-1 and VEGFR-2 receptors both at mRNA and protein levels. This inhibition, however, was transient (observed after 6-12 h, but not after 24 h) and weak (20-30%), and could not fully explain inhibition of response to VEGF. Accordingly, proliferation was inhibited when 15d-PGJ(2) was added 24 h after VEGF or in cells stimulated with basic fibroblast growth factor. Interestingly, 15d-PGJ(2) decreased activities of c-jun and c-myc in HUVEC and overexpression of c-myc attenuated its antiproliferative effects. This suggests that inhibition of this transcription factor by 15d-PGJ(2) contributes to decrease in angiogenic response
    corecore