4,493 research outputs found
Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice
Although most of the proposed beneficial effects of fiber consumption have been attributed to viscous and gel-forming properties of soluble fiber, it is mainly insoluble cereal fiber and whole grains that are strongly associated with reduced diabetes risk in prospective cohort studies, indicating that other unknown mechanisms are likely to be involved.
We performed a long-term study investigating potential protective effects of adding soluble guar fiber (10% w/w) vs. insoluble cereal fiber (10% w/w) to an isoenergetic and macronutrient matched high-fat diet in obesity-prone C57BL/6J mice. After 45 weeks, mice fed soluble vs. insoluble fiber showed both significantly increased body weight (41.8±3.0 vs. 33.6±1.5 g, P=.03) and elevated markers of insulin resistance. In mice fed soluble fiber, energy loss via the feces was significantly lower and colonic fermentation with production of short chain fatty acids (SCFA) was markedly increased. Gene expression analysis in white adipose tissue showed significantly increased levels of the fatty acid target G-protein coupled receptor-40 in soluble fiber-fed mice. Liver gene expression in the insoluble fiber group showed a pattern consistent with increased fatty acid oxidation. The present results show that soluble vs insoluble dietary fiber added to a high-fat, Western-style diet differently affected body weight and estimates of insulin sensitivity in obesity-prone mice. Soluble fiber intake with increased SCFA production significantly contributed to digested energy, thereby potentially outweighing the well known short-term beneficial effects of soluble fiber consumption
Nutritional modulation of insulin resistance
Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts
Non-linear coupled CNN models for multiscale image analysis
A CNN model of partial differential equations (PDEs) for image multiscale analysis is proposed. The model is based on a polynomial representation of the diffusivity function and defines a paradigm of polynomial CNNs,for approximating a large class of nonlinear isotropic and/or anisotropic PDEs. The global dynamics of spacediscrete polynomial CNN models is analyzed and compared with the dynamic behavior of the corresponding space-continuous PDE models. It is shown that in the isotropic case the two models are not topologically equivalent: in particular discrete CNN models allow one to obtain the output image without stopping the image evolution after a given time (scale). This property represents an advantage with respect to continuous PDE models and could simplify some image preprocessing algorithm
Convex Regularization of Multi-Channel Images Based on Variants of the TV-Model
We discuss existence and regularity results for multi-channel images in the
setting of isotropic and anisotropic variants of the TV-model
Clinical problems caused by obesity
Over the past few decades the incidence of obesity has doubled worldwide and current
estimates classify more than 1.5 billion adults as overweight and at least 500 million of them as
clinically obese, with body mass index (BMI) over 25 kg/m2 and 30 kg/m2, respectively. Obesity
prevalence rates are steadily rising in the majority of the modern Western societies, as well as in the
developing world. Moreover, alarming trends of weight gain are reported for children and adolescents,
undermining the present and future health status of the pediatric population. To highlight the
related threat to public health, the World Health Organization has declared obesity a global epidemic,
also stressing that it remains an under-recognized problem of the public health agenda
Pseudo-inverses of difference matrices and their application to sparse signal approximation
We derive new explicit expressions for the components of Moore-Penrose
inverses of symmetric difference matrices. These generalized inverses are
applied in a new regularization approach for scattered data interpolation based
on partial differential equations. The columns of the Moore-Penrose inverse
then serve as elements of a dictionary that allow a sparse signal
approximation. In order to find a set of suitable data points for signal
representation we apply the orthogonal patching pursuit (OMP) method.Comment: 16 page
Discrete spherical means of directional derivatives and Veronese maps
We describe and study geometric properties of discrete circular and spherical
means of directional derivatives of functions, as well as discrete
approximations of higher order differential operators. For an arbitrary
dimension we present a general construction for obtaining discrete spherical
means of directional derivatives. The construction is based on using the
Minkowski's existence theorem and Veronese maps. Approximating the directional
derivatives by appropriate finite differences allows one to obtain finite
difference operators with good rotation invariance properties. In particular,
we use discrete circular and spherical means to derive discrete approximations
of various linear and nonlinear first- and second-order differential operators,
including discrete Laplacians. A practical potential of our approach is
demonstrated by considering applications to nonlinear filtering of digital
images and surface curvature estimation
04172 Abstracts Collection -- Perspectives Workshop: Visualization and Image Processing of Tensor Fields
From 18.04.04 to 23.04.04, the Dagstuhl Seminar 04172 ``Perspectives Workshop: Visualization and Image Processing of Tensor Fields\u27\u27 was held
in the International Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
- …
