19 research outputs found

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice

    No full text
    The anti-diabetic activity of ginger powder (Zingiber officinale) has been recently promoted, with the recommendation to be included as one of the dietary supplements for diabetic patients. However, previous studies presented different results, which may be caused by degradation and metabolic changes of ginger components, gingerols, shogaols and paradols. Therefore, we prepared 10 ginger active components, namely 6-, 8-, 10-paradols, 6-, 8-, 10-shogaols, 6-, 8-, 10-gingerols and zingerone, and evaluated their anti-hyperglycemic activity. Among the tested compounds, 6-paradol and 6-shogaol showed potent activity in stimulating glucose utilization by 3T3-L1 adipocytes and C2C12 myotubes. The effects were attributed to the increase in 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in 3T3-L1 adipocytes. 6-Paradol, the major metabolite of 6-shogaol, was utilized in an in vivo assay and significantly reduced blood glucose, cholesterol and body weight in high-fat diet-fed mice

    YC-1 Prevents Tumor-Associated Tissue Factor Expression and Procoagulant Activity in Hypoxic Conditions by Inhibiting p38/NF-κB Signaling Pathway

    No full text
    Tissue factor (TF) expressed in cancer cells has been linked to tumor-associated thrombosis, a major cause of mortality in malignancy. Hypoxia is a common feature of solid tumors and can upregulate TF. In this study, the effect of YC-1, a putative inhibitor of hypoxia-inducible factor-1&alpha; (HIF-1&alpha;), on hypoxia-induced TF expression was investigated in human lung cancer A549 cells. YC-1 selectively prevented hypoxia-induced TF expression and procoagulant activity without affecting the basal TF levels. Surprisingly, knockdown or pharmacological inhibition of HIF-1&alpha; failed to mimic YC-1&prime;s effect on TF expression, suggesting other mechanisms are involved. NF-&kappa;B, a transcription factor for TF, and its upstream regulator p38, were activated by hypoxia exposure. Treatment of hypoxic A549 cells with YC-1 prevented the activation of both NF-&kappa;B and p38. Inhibition of p38 suppressed hypoxia-activated NF-&kappa;B, and inhibited TF expression and activity to similar levels as treatment with an NF-&kappa;B inhibitor. Furthermore, stimulation of p38 by anisomycin reversed the effects of YC-1. Taken together, our results suggest that YC-1 prevents hypoxia-induced TF in cancer cells by inhibiting the p38/NF-&kappa;B pathway, this is distinct from the conventional anticoagulants that systemically inhibit blood coagulation and may shed new light on approaches to treat tumor-associated thrombosis

    Developing Lactic Acid Bacteria as an Oral Healthy Food

    No full text
    Lactic acid bacteria have functions in immunoregulation, antagonism, and pathogen inhibition. The purpose of this study was to evaluate the effectiveness of lactic acid bacteria (LAB) in countering oral pathogens and develop related products. After a series of assays to 450 LAB strains, 8 heat-inactivated strains showed a strong inhibitory effect on a caries pathogen, Streptococcus mutans, and 308 heat-inactivated LAB strains showed a strong inhibitory effect on a periodontal pathogen, Porphyromonas gingivalis. The key reasons for inhibiting oral pathogens were bacteriocins produced by LAB and the coaggregation effect of the inactivated cells. We selected Lacticaseibacillus (Lb) paracasei 111 and Lb.paracasei 141, which had the strongest inhibitory effects on the above pathogens, was the main oral health food source. The optimal cultural conditions of Lb. paracasei 111 and Lb. paracasei 141 were studied. An oral tablet with a shelf life of 446 days made of the above strains was developed. A 40 volunteers’ clinical study (CSMUH IRB number: CS05065) was conducted with this tablet in the Periodontological Department of the Stomatology Research Center, Affiliated Hospital of Chung Shan Medical University (Taiwan). After 8 weeks of testing, 95% and 78.9% of patients showed an effect on reducing periodontal pathogens and improving probing pocket depth, respectively, in the oral tablet group

    Inhibitory effect of berberine on interleukin-2 secretion from PHA-treated lymphocytic Jurkat cells

    No full text
    [[abstract]]Berberine is an isoquinoline alkaloid isolated from herb plants, such as Cortex phellodendri (Huangbai) and Rhizoma coptidis (Huanglian). Huanglian and Huangbai have been used as “heat-removing” agents. In addition, berberine has been reported to exert anti-inflammatory effect both in vivo and in vitro, where mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) expressions are critically implicated. We herein tested the hypothesis that berberine exerts an anti-inflammatory effect through MAPK and COX-2 signaling pathway in T-cell acute lymphoblastic leukemia (T-ALL). In Jurkat cells, we found that PHA exposure caused elevation on interleukin-2 (IL-2) production in a time-dependent manner. PHA-stimulated reactions were steeply suppressed by berberine, such as IL-2 mRNA expression and protein secretion. However, berberine did not exert any cytotoxic effect at doses of 40 μg/ml. In addition, the possible molecular mechanism of anti-inflammation effect of berberine could be the inhibition of PHA-evoked phosphorylation of p38, since c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) expressions did not alter. Consistent with above results, berberine inhibition on PHA-induced IL-2 secretion could be reversed by treatment of SB203580, a specific inhibitor of p38-MAPK. Interestingly, upregulation of PHA-induced COX-2 expression was also observed following berberine treatment of Jurkat cells. Furthermore, flow cytometry analysis showed berberine-induced cell cycle arrest at G1 phase after PHA stimulation and decreased percentage of G2/M phase. In conclusion, our study demonstrated that the anti-inflammatory effect of berberine largely potentially results from its ability to attenuate p38 MAPK expression, and does not exclude a positive action of berberine on cell cycle arrest. These results provide an innovative medicine strategy to against or treat T-ALL patients

    DNA barcoding of marine teleost fishes (Teleostei) in Cebu, the Philippines, a biodiversity hotspot of the coral triangle

    No full text
    Abstract A morphology-based barcoding library of market teleost fishes (Teleostei) in Cebu is built based on cytochrome c oxidase subunit I (COI) sequences and voucher specimens which aimed to establish a reliable reference of frequently traded fishes in the province, a biodiversity hotspot at the center of the Philippine archipelago. A total of 1721 specimens were collected from 18 fish markets and landing sites around the province, in which 538 specimens were sequenced belonging to 393 species from 229 genera, 86 families, and 37 orders. Most speciose families are coral reef or reef-related shallow-water species. Twelve species from 11 families are newly recorded in the Philippine waters, among which 7 species are deep-sea inhabitants, while 3 species have expanded their distribution range. Only 20 taxa could not be identified to the species level due to the difficulty in morphological examinations, absence of matched reference sequences in online databases, and/or problematic species awaiting further studies. This first comprehensive DNA barcoding survey of Cebu fishes can facilitate further taxonomic research as well as the conservation and management of fisheries in the Philippines

    6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice

    No full text
    The anti-diabetic activity of ginger powder (Zingiber officinale) has been recently promoted, with the recommendation to be included as one of the dietary supplements for diabetic patients. However, previous studies presented different results, which may be caused by degradation and metabolic changes of ginger components, gingerols, shogaols and paradols. Therefore, we prepared 10 ginger active components, namely 6-, 8-, 10-paradols, 6-, 8-, 10-shogaols, 6-, 8-, 10-gingerols and zingerone, and evaluated their anti-hyperglycemic activity. Among the tested compounds, 6-paradol and 6-shogaol showed potent activity in stimulating glucose utilization by 3T3-L1 adipocytes and C2C12 myotubes. The effects were attributed to the increase in 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in 3T3-L1 adipocytes. 6-Paradol, the major metabolite of 6-shogaol, was utilized in an in vivo assay and significantly reduced blood glucose, cholesterol and body weight in high-fat diet-fed mice
    corecore