16 research outputs found
Foreground Separation and Constraints on Primordial Gravitational Waves with the PICO Space Mission
PICO is a concept for a NASA probe-scale mission aiming to detect or
constrain the tensor to scalar ratio , a parameter that quantifies the
amplitude of inflationary gravity waves. We carry out map-based component
separation on simulations with five foreground models and input values
and . We forecast determinations using a
Gaussian likelihood assuming either no delensing or a residual lensing factor
= 27%. By implementing the first full-sky, post
component-separation, map-domain delensing, we show that PICO should be able to
achieve = 22% - 24%. For four of the five foreground models we
find that PICO would be able to set the constraints r < 1.3 \times 10^{-4}
\,\, \mbox{to} \,\, r <2.7 \times 10^{-4}\, (95\%) if , the
strongest constraints of any foreseeable instrument. For these models,
is recovered with confidence levels between and
. We find weaker, and in some cases significantly biased, upper
limits when removing few low or high frequency bands. The fifth model gives a
detection when and a bias with .
However, by correlating determinations from many small 2.5% sky areas with
the mission's 555 GHz data we identify and mitigate the bias. This analysis
underscores the importance of large sky coverage. We show that when only low
multipoles are used, the non-Gaussian shape of the true
likelihood gives uncertainties that are on average 30% larger than a Gaussian
approximation.Comment: 34 pages, 13 figures, published in JCA
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008â11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003â13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 Ă 10â10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 Ă 10â8 DHFR p=8·37 Ă 10â7 MTRNR2L2 p=2·15 Ă 10â9) and to a lesser extent in REGISTRY (MSH3 p=9·36 Ă 10â4 DHFR p=8·45 Ă 10â4 MTRNR2L2 p=1·20 Ă 10â3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 Ă 10â8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16â0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06â0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications
International audienceWe present a demonstration of the in-flight polarization angle calibration for the JAXA/ISAS second strategic large class mission, LiteBIRD, and estimate its impact on the measurement of the tensor-to-scalar ratio parameter, r, using simulated data. We generate a set of simulated sky maps with CMB and polarized foreground emission, and inject instrumental noise and polarization angle offsets to the 22 (partially overlapping) LiteBIRD frequency channels. Our in-flight angle calibration relies on nulling the EB cross correlation of the polarized signal in each channel. This calibration step has been carried out by two independent groups with a blind analysis, allowing an accuracy of the order of a few arc-minutes to be reached on the estimate of the angle offsets. Both the corrected and uncorrected multi-frequency maps are propagated through the foreground cleaning step, with the goal of computing clean CMB maps. We employ two component separation algorithms, the Bayesian-Separation of Components and Residuals Estimate Tool (B-SeCRET), and the Needlet Internal Linear Combination (NILC). We find that the recovered CMB maps obtained with algorithms that do not make any assumptions about the foreground properties, such as NILC, are only mildly affected by the angle miscalibration. However, polarization angle offsets strongly bias results obtained with the parametric fitting method. Once the miscalibration angles are corrected by EB nulling prior to the component separation, both component separation algorithms result in an unbiased estimation of the r parameter. While this work is motivated by the conceptual design study for LiteBIRD, its framework can be broadly applied to any CMB polarization experiment. In particular, the combination of simulation plus blind analysis provides a robust forecast by taking into account not only detector sensitivity but also systematic effects
PICO: Probe of Inflation and Cosmic Origins
The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost
PICO: Probe of Inflation and Cosmic Origins
The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 K arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level , or will rule out with more than all inflation models for which the characteristic scale in the potential is the Planck scale. With LSST's data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at , constrain the effective number of light particle species with , and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations with sub-percent accuracy. Cross-correlating PICO's map of the thermal Sunyaev-Zeldovich effect with LSST's gold sample of galaxies will precisely trace the evolution of thermal pressure with . PICO's maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science
PICO: Probe of Inflation and Cosmic Origins
The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 K arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level , or will rule out with more than all inflation models for which the characteristic scale in the potential is the Planck scale. With LSST's data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at , constrain the effective number of light particle species with , and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations with sub-percent accuracy. Cross-correlating PICO's map of the thermal Sunyaev-Zeldovich effect with LSST's gold sample of galaxies will precisely trace the evolution of thermal pressure with . PICO's maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science
Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
LiteBIRD has been selected as JAXAâs strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34â161 GHz), one of LiteBIRDâs onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90⊠are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented
LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 ΌK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes
LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 ΌK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes
Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
LiteBIRD has been selected as JAXAâs strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34â161 GHz), one of LiteBIRDâs onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90⊠are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented