247 research outputs found

    A critic in action? A functional examination of the Striato-Pallido-Habenular circuit

    Get PDF
    The basal ganglia (BG) and the midbrain dopamine (DA) system are considered key loci of reinforcement learning (RL), or learning by "trial and error", in the brain. The BG are implicated in action selection, and thus the "trial" part of the learning process, and the dopamine (DA) system is known to encode "error" signals. This DA error signal—the reward prediction error—is thought to adjust the BG’s propensity to select a "tried" action again in the future. In RL terms, the action-selecting BG is called the "actor", and the action-critiquing DA system the "critic". Here, a candidate striato-pallido-habenular "critic pathway" upstream of the DA system is examined. The proposed critic pathway originates in the striosome compartment of the striatum, and projects via a non-canonical internal globus pallidus (GPi) population to the lateral habenula (LHb). LHb activity has been shown to encode the inverse of the DA reward prediction error signal, and to cause inhibition within the DA system. This posits the described striato-pallidohabenular pathway as key part of the critic circuit. To investigate the role of the striato-pallido-habenular pathway in action, we recorded and manipulated the neuronal activity of neurons of the striatal striosome (Article I) and the GPi (Article II & III) in mice performing tasks that engendered trial and error behavioral strategies. We found that the activity of striatal striosome neurons had much in common with that of neurons within the striatal "actor pathways". Moreover, all striatal neurons jointly represented the evolving behavioral context in a spatiotemporally continuous population code, undermining notions of discrete and well-de ned action selection and evaluation processes. The results of our experiments on the GPi challenged its proposed role in driving the LHb’s inverse reward prediction error signals, and implicated the GPi-adjacent lateral hypothalamus (LHA) in that role instead. In sum, the studies included here call into question whether the striato-pallido-habenular pathway serves as a critic in BG-mediated actio

    Electrophysiological differences and similarities in audiovisual speech processing in CI users with unilateral and bilateral hearing loss.

    Get PDF
    Hearing with a cochlear implant (CI) is limited compared to natural hearing. Although CI users may develop compensatory strategies, it is currently unknown whether these extend from auditory to visual functions, and whether compensatory strategies vary between different CI user groups. To better understand the experience-dependent contributions to multisensory plasticity in audiovisual speech perception, the current event-related potential (ERP) study presented syllables in auditory, visual, and audiovisual conditions to CI users with unilateral or bilateral hearing loss, as well as to normal-hearing (NH) controls. Behavioural results revealed shorter audiovisual response times compared to unisensory conditions for all groups. Multisensory integration was confirmed by electrical neuroimaging, including topographic and ERP source analysis, showing a visual modulation of the auditory-cortex response at N1 and P2 latency. However, CI users with bilateral hearing loss showed a distinct pattern of N1 topography, indicating a stronger visual impact on auditory speech processing compared to CI users with unilateral hearing loss and NH listeners. Furthermore, both CI user groups showed a delayed auditory-cortex activation and an additional recruitment of the visual cortex, and a better lip-reading ability compared to NH listeners. In sum, these results extend previous findings by showing distinct multisensory processes not only between NH listeners and CI users in general, but even between CI users with unilateral and bilateral hearing loss. However, the comparably enhanced lip-reading ability and visual-cortex activation in both CI user groups suggest that these visual improvements are evident regardless of the hearing status of the contralateral ear

    The timecourse of multisensory speech processing in unilaterally stimulated cochlear implant users revealed by ERPs.

    Get PDF
    A cochlear implant (CI) is an auditory prosthesis which can partially restore the auditory function in patients with severe to profound hearing loss. However, this bionic device provides only limited auditory information, and CI patients may compensate for this limitation by means of a stronger interaction between the auditory and visual system. To better understand the electrophysiological correlates of audiovisual speech perception, the present study used electroencephalography (EEG) and a redundant target paradigm. Postlingually deafened CI users and normal-hearing (NH) listeners were compared in auditory, visual and audiovisual speech conditions. The behavioural results revealed multisensory integration for both groups, as indicated by shortened response times for the audiovisual as compared to the two unisensory conditions. The analysis of the N1 and P2 event-related potentials (ERPs), including topographic and source analyses, confirmed a multisensory effect for both groups and showed a cortical auditory response which was modulated by the simultaneous processing of the visual stimulus. Nevertheless, the CI users in particular revealed a distinct pattern of N1 topography, pointing to a strong visual impact on auditory speech processing. Apart from these condition effects, the results revealed ERP differences between CI users and NH listeners, not only in N1/P2 ERP topographies, but also in the cortical source configuration. When compared to the NH listeners, the CI users showed an additional activation in the visual cortex at N1 latency, which was positively correlated with CI experience, and a delayed auditory-cortex activation with a reversed, rightward functional lateralisation. In sum, our behavioural and ERP findings demonstrate a clear audiovisual benefit for both groups, and a CI-specific alteration in cortical activation at N1 latency when auditory and visual input is combined. These cortical alterations may reflect a compensatory strategy to overcome the limited CI input, which allows the CI users to improve the lip-reading skills and to approximate the behavioural performance of NH listeners in audiovisual speech conditions. Our results are clinically relevant, as they highlight the importance of assessing the CI outcome not only in auditory-only, but also in audiovisual speech conditions

    Metabolic control during the neonatal period in phenylketonuria:associations with childhood IQ

    Get PDF
    Background In phenylketonuria, treatment and subsequent lowering of phenylalanine levels usually occur within the first month of life. This study investigated whether different indicators of metabolic control during the neonatal period were associated with IQ during late childhood/early adolescence. Methods Overall phenylalanine concentration during the first month of life (total "area under the curve"), proportion of phenylalanine concentrations above upper target level (360 mu mol/L) and proportion below lower target level (120 mu mol/L) during this period, diagnostic phenylalanine levels, number of days until phenylalanine levels were 360 mu mol/L during the first month of life negatively correlated with IQ in late childhood/early adolescence. Separately, phenylalanine concentrations during different periods within the first month of life (0-10 days, 11-20 days, 21-30 days) were negatively correlated with later IQ as well, but correlation strengths did not differ significantly. No further significant associations were found. Conclusions In phenylketonuria, achievement of target-range phenylalanine levels during the neonatal period is important for cognition later in life, also when compared to other indicators of metabolic control. Impact In phenylketonuria, it remains unclear during which age periods or developmental stages metabolic control is most important for later cognitive outcomes. Phenylalanine levels during the neonatal period were clearly and negatively related to later IQ, whereas no significant associations were observed for other indices of metabolic control. This emphasizes the relative importance of this period for cognitive development in phenylketonuria. No further distinctions were observed in strength of associations with later IQ between different indicators of metabolic control during the neonatal period. Thus, achievement of good metabolic control within 1 month after birth appears "safe" with respect to later cognitive outcomes

    Serum prolactin as a biomarker for the study of intracerebral dopamine effect in adult patients with phenylketonuria: a cross-sectional monocentric study

    Get PDF
    BACKGROUND: It has been previously postulated that high phenylalanine (Phe) might disturb intracerebral dopamine production, which is the main regulator of prolactin secretion in the pituitary gland. Previously, various associations between Phe and hyperprolactinemia were revealed in studies performed in phenylketonuria (PKU) children and adolescents. The aim of the present study was to clarify whether any relation between serum phenylalanine and prolactin levels can be found in adult PKU patients. PATIENTS AND METHODS: We conducted a cross-sectional, monocentric study including 158 adult patients (male n = 68, female n = 90) with PKU. All patients were diagnosed during newborn screening and were treated since birth. Serum Phe, tyrosine (Tyr), prolactin (PRL), and thyroid-stimulating hormone (TSH) levels were measured, and Phe/Tyr ratio was calculated. Males and females were analyzed separately because the serum prolactin level is gender-dependent. RESULTS: No significant correlations were found between serum phenylalanine, tyrosine, or the Phe/Tyr ratio and serum prolactin level either in the male or in the female group. CONCLUSIONS: In treated adult PKU patients, the serum prolactin level may not be significantly influenced by Phe or Tyr serum levels

    Cognitive function of idiopathic childhood epilepsy

    Get PDF
    Most children with epilepsy are of normal intelligence. However, a significant subset will have temporary or permanent cognitive impairment. Factors that affect cognitive function are myriad and include the underlying neuropathology of the epilepsy, seizures, epileptiform discharges, psychosocial problems, age at seizure onset, duration of epilepsy, and side effects associated with antiepileptic drugs. This review article discusses cognitive function in children with idiopathic epilepsy and the effects of antiepileptic drugs on cognitive function in children

    Adult cognitive outcomes in phenylketonuria:explaining causes of variability beyond average Phe levels

    Get PDF
    OBJECTIVE: The objective was to deepen the understanding of the causes of individual variability in phenylketonuria (PKU) by investigating which metabolic variables are most important for predicting cognitive outcomes (Phe average vs Phe variation) and by assessing the risk of cognitive impairment associated with adopting a more relaxed approach to the diet than is currently recommended. METHOD: We analysed associations between metabolic and cognitive measures in a mixed sample of English and Italian early-treated adults with PKU (N = 56). Metabolic measures were collected through childhood, adolescence and adulthood; cognitive measures were collected in adulthood. Metabolic measures included average Phe levels (average of median values for each year in a given period) and average Phe variations (average yearly standard deviations). Cognition was measured with IQ and a battery of cognitive tasks. RESULTS: Phe variation was as important, if not more important, than Phe average in predicting adult outcomes and contributed independently. Phe variation was particularly detrimental in childhood. Together, childhood Phe variation and adult Phe average predicted around 40% of the variation in cognitive scores. Poor cognitive scores (> 1 SD from controls) occurred almost exclusively in individuals with poor metabolic control and the risk of poor scores was about 30% higher in individuals with Phe values exceeding recommended thresholds. CONCLUSIONS: Our results provide support for current European guidelines (average Phe value = < 360 μmol/l in childhood; = < 600 μmo/l from 12 years onwards), but they suggest an additional recommendation to maintain stable levels (possibly Phe SD = < 180 μmol/l throughout life). PUBLIC SIGNIFICANCE STATEMENTS: We investigated the relationship between how well people with phenylketonuria control blood Phe throughout their life and their ability to carry out cognitive tasks in adulthood. We found that avoiding blood Phe peaks was as important if not more important that maintaining average low Phe levels. This was particularly essential in childhood. We also found that blood Phe levels above recommended European guidelines was associated with around 30% increase in the risk of poor cognitive outcomes
    corecore