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Abstract

The basal ganglia (BG) and the midbrain dopamine (DA) system are consid-

ered key loci of reinforcement learning (RL), or learning by "trial and error", in

the brain. The BG are implicated in action selection, and thus the "trial" part

of the learning process, and the dopamine (DA) system is known to encode

"error" signals. This DA error signal—the reward prediction error—is thought

to adjust the BG’s propensity to select a "tried" action again in the future. In RL

terms, the action-selecting BG is called the "actor", and the action-critiquing

DA system the "critic". Here, a candidate striato-pallido-habenular "critic

pathway" upstream of the DA system is examined.

The proposed critic pathway originates in the striosome compartment of

the striatum, and projects via a non-canonical internal globus pallidus (GPi)

population to the lateral habenula (LHb). LHb activity has been shown to

encode the inverse of the DA reward prediction error signal, and to cause

inhibition within the DA system. This posits the described striato-pallido-

habenular pathway as key part of the critic circuit.

To investigate the role of the striato-pallido-habenular pathway in action,

we recorded and manipulated the neuronal activity of neurons of the striatal

striosome (Article I) and the GPi (Article II & III) in mice performing tasks that

engendered trial and error behavioral strategies. We found that the activity of

striatal striosome neurons had much in common with that of neurons within

the striatal "actor pathways". Moreover, all striatal neurons jointly represented

the evolving behavioral context in a spatiotemporally continuous population

code, undermining notions of discrete and well-de�ned action selection and

evaluation processes. The results of our experiments on the GPi challenged

its proposed role in driving the LHb’s inverse reward prediction error signals,

and implicated the GPi-adjacent lateral hypothalamus (LHA) in that role

instead. In sum, the studies included here call into question whether the

striato-pallido-habenular pathway serves as a critic in BG-mediated action.
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Chapter 1

Introduction

1.1 Actor-Critic Reinforcement Learning

It’s a sunny Monday morning and a new ice cream vendor has opened up

shop on your way to work. Spontaneously, you decide to try a scoop of the

chocolate �avor. The ice cream tastes great—you’ll be back tomorrow. Over

the next few days, it becomes your policy to stop by the shop every day. The

sun, the shop’s colorful sign. . . you are barely aware of your actions before

you �nd yourself back out on the street again with a cone of chocolate ice

cream in hand. One popular theoretical account of how you might have

acquired this (hopefully optimal) behavioral policy of buying chocolate ice

cream on sunny days, and of how you are compelled to follow it almost

automatically, is o�ered by the reinforcement learning (RL) framework.

RL emerged at the intersection of psychology and computer science,

when the abstract “associative learning rules” of the behaviorists4,5, originally

devised to explain the behavioral adaptations of animals in conditioning

experiments, inspired the design of arti�cial intelligence (AI) systems and

robots capable of learning by trial-and-error6,7. In the simplest terms, RL is

learning from experience, without explicit instruction: whenever an action

leads to an unexpected improvement, that action is “reinforced”, compelling

the behaving agent to repeat it the next time it encounters the same situation.

Conversely, if things turned out worse than expected, the agent will be less

inclined to take the same course of action again in future.

A canonical AI implementation of RL is the actor-critic architecture7,8.

An “actor” and a “critic” module both receive information about the state of

the environment, which they process to di�erent ends. The actor translates

1



2 INTRODUCTION

Figure 1.1 | Basal ganglia anatomy in the mouse.
Left: The basal ganglia consist of the striatum (Str), the external and internal segments of the
globus pallidus (GPe & GPi), the subthalamic nucleus (STN) and the substantia nigra pars retic-
ulata (SNr). The major nuclei of the dopaminergic midbrain are the adjacent ventral tegmental
area (VTA, not shown) and the substantia nigra pars compacta (SNc).
Right: Coronal brain section depicting the striosome and matrix compartments of the stria-
tum (red dashed line). µ-opioid receptor expression in the striosome visualized via the cre-
dependent expression of the fluorescent protein tdTomato (Oprm1-cre x Ai14 mouse crossing).

state into action, determining how to act from memorized policies. The critic

translates state into memorized value (or “goodness”) expectations, which

are used to critique the consequences of the actor’s choice. Whenever an

action led to a state the value of which surpassed or fell short of expectation,

the critic emits a signed “prediction error” signal, which re�ects the di�erence

between the expected and the observed value return. The prediction error

is used to adjust and optimize both the stored state-policy and state-value

mappings for future use, thus driving learning in both the actor and the critic.

With its roots in the behaviorist study of animal learning, RL is of great

interest to neuroscientists. After all, if similarities between the architectures

of successful AI systems and the brain can be identi�ed, knowledge of the

computational mechanics of the former may well shed light on the workings

of the latter9–11. In this spirit, the deeply interconnected subcortical circuitry

of the basal ganglia (BG) and the dopaminergic midbrain nuclei (Fig. 1.1 left)

have long been viewed and studied as a potential biological implementation

of the actor-critic RL model9,10,12–15. How the BG nuclei may map onto the

actor-critic architecture and drive action selection (e.g. your ice cream habit)

is the subject of the next section.
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1.2 The Actor-Critic Model of the Basal Ganglia

In the 1990s, Wolfram Schultz and colleagues observed that the �ring of

dopamine (DA) neurons in themidbrain resembled the RL prediction error16–18,

suggesting that DA neurons served as the output-end of a brain-based critic

circuit6. The BG nuclei are profusely and in part reciprocally connected

with the DA system19–21. The BG were consequently widely identi�ed as the

foremost candidates to instantiate both the remainder of the critic circuit, as

well as the actor circuit, in a biological actor-critic system updated by the

newly-discovered DA prediction error signal12,13,22.

Before discussing how the BG nuclei may implement the RL architecture

in more detail, I will describe why the BG as a whole are exquisitely-situated

anatomically to recognize states and to in�uence action, and thus to serve

as an RL agent of the brain.

1.2.1 The Basal Ganglia’s Input and Output

A useful RL agent must be able to sense and act on the environment; after

all, a capacity to learn how to act by trial-and-error (RL) is wasted if there

is nothing to learn to respond to or to act upon. That naturally raises the

question: are the BG’s input and output stages—the striatum and the GPi/SNr,

respectively—wired to “sense and to act” as required?

The BG’s primary input structure, the striatum, receivesmassive excitatory

(i.e. glutamatergic) input from virtually all regions of the neocortex, as well

as a plethora of projections from the thalamus and the brain stem21,23,24.

These disparate inputs supply the striatum with ample and diverse state-

relevant information, ranging from the sensory, over motor activity, to the

emotional, giving the BG plenty to sense and learn about. Importantly, striatal

inputs are—to a degree—topographically and functionally organized, and

this topography is—to a degree—preserved along the BG pathways (Fig.

1.2 A-B)25–27. At the same time, BG processing must necessarily be highly

integrative, as the BG has to “funnel” its enormous input into an output (i.e. the

GPi and the SNr) consisting of magnitudes fewer neurons13,28,29.

Without a signi�cant convergence of inputs of diverse informational con-

tent on individual BG neurons, the BG could not possibly learn to recognize

complex states, as complex states are bound to be characterized by rich

combinations of sense impressions and cognitive variables12,30. Suitably,
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Figure 1.2 | Cortico-BG-thalamic loops.
A The striatum’s dorsal part, or caudoputamen (CP), subdivided into functional domains
based on the cortical sources of their input. Distinct domains in the lateral part of the dor-
sal striatum process information relating to the trunk (tr), lower limb (ll), upper limb (ul), and
inner mouth (m/i). CPi: caudoputamen, intermediate level.
B Left: The lower limb, upper limb, and inner mouth domains of the lateral striatum were in-
jected with an anterograde tracer. Right: The axon terminals of the striatal projection neurons
located in the three injected domains are visualized in the SNr. The resulting image shows that
the somatotopic organization of the striatal domains is maintained at the level of the SNr.
C Foster et al.’s27 model of cortico-BG-thalamic loops shows the partially parallel, partially
convergent topographic organization of the network. In many instances, a loop’s cortical origin
and final target is roughly the same region; such loops are referred to as “closed loops” (e.g. the
mouth loops).

Adapted from Foster et al.27, used under CC BY 4.0.

https://doi.org/10.1038/s41586-021-03993-3
https://creativecommons.org/licenses/by/4.0/
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each cortical projection to striatum provides not only dense, focal, and to-

pographic, but also sparse and di�use innervation; i.e. although the dense

part of a corticostriatal projection may target a clearly-delineated striatal

zone, the projection’s di�use part can extend well beyond those borders.

The dense and di�use terminal �elds of diverse cortical projections overlap

and converge substantially, and supply the means for the BG to form the

complex combinatorial associations needed to recognize state24,31.

The BG’s output structures, the GPi and the SNr, project—via the thalamus

–to the cortex, as well as to a multitude of brain stem nuclei27,32. By targeting

many of their sources of input, and by preserving input topography to some

extent, the BG are known to form subcircuits of partially-closed, parallel

loops, which subserve distinct functions related to their extra-BG origins and

targets (Fig. 1.2 C)26,27,32,33.

BG motor loops, involving motor e�ectors in the motor cortex and the

brainstem, are historically best researched, owing to the fact that BG dys-

function has long been linked to movement disorders such as Parkinson’s

disease, and that movement is highly tractable scienti�cally34–37. Such work

has established beyond a doubt that the BG are heavily involved in volun-

tary motor control and thus of obvious import to our ability to act on the

environment. However, the existence of loops incorporating cortical regions

implicated in higher cognitive and emotional functions, such as orbitofrontal

or anterior cingulate cortex, strongly suggests that the BG’s in�uence over

our actions is not limited to the purely motoric26,29,34.

It is important to note that the canonical BG output pathways are inhibitory

(i.e. GABAergic) and tonically (i.e. continuously) engaged37. Therefore, the

GPi and the SNr operate by reducing or enhancing the constant suppression

they exert over their downstream targets. Presumably then, the function of

the BG is not to intrinsically generate the neuronal activity driving our actions

(motor or otherwise), but rather to constrain or outright gate such activity

elsewhere in the brain37–39. Metaphorically-speaking, the BG must “act” by

curating or directing rather than by creating. In modern BGmodels, including

actor-critic models, actions are consequently usually initiated and executed

by the (motor) e�ectors outside the BG—for example by motor cortex—and

not by the BG itself12,29,36,40,41.

To summarize: The BG are placed to integrate diverse, multimodal con-

textual information from all over the cortex and thus to accurately “sense” the
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current state. They are moreover positioned to modulate or gate motor ef-

fectors across cortex and the brainstem through their partially-closed motor

loops, and to do likewise for non-motor e�ectors through other loops. The BG

may therefore exert powerful control over a variety of brain circuits shaping

our actions. Judging only from their inputs and outputs, the BG appear to be

an ideal “black box” to house a RL system. It is time to have a look inside that

black box, at how an actor-critic architecture may be implemented within.

1.2.2 The Basal Ganglia’s Matrix-Actor and Striosome-Critic

The �rst actor-critic account of the BGwas published in 1994 by Houk, Adams

and Barto12, in the wake of the discovery of the DA prediction error16. It

inspired a number of similar, if mechanistically more detailed, models in the

late 1990s22,40,42–44 (extensively reviewed by Joel, Niv and Ruppin in 200213),

and beyond45–47. The basic anatomical and functional prescriptions of these

models are outlined next.

The early actor-critic models of the 1990s widely featured the striosome

as the part of the critic circuit which contributes the state-value estimates

to the prediction error computation12,13. The striosome is a histochemically

distinctive compartment of the BG’s principal input structure, the striatum.

The de�ning feature of the striosome compartment is its dense expression of

the µ-opioid receptor48–51. In cross-sections of the brain in which the µ-opioid

receptor is �uorescently-labeled, the striosomenetwork appears as “patches”

of �uorescent tissue embedded in the many times larger, complementary

“matrix” compartment (Fig. 1.1 right). In classic actor-critic models, the matrix

implements the actor12,13.

The striosome and the matrix were mapped onto the actor and the critic

primarily due to their di�erential connectivity with the DA system12,13,52. A

great number of studies of the compartments—old and new—suggest that

the dorsal striatal striosome sends direct projections to the DA system, tar-

geting in particular the DA neurons of the substantia nigra pars compacta

(SNc), whereas the dorsal striatal matrix does so to amuch lesser degree53–60.

The striosome hence appears to be the origin of an alternative BG output

pathway via the SNc; a pathway separate from the major matrix pathways

targeting the GPi and the SNr53. Signi�cantly, the SNc releases DA di�usely

across the entire dorsal part of the striatum and targets both the striosome
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and the matrix20,61,62. The hypothetical striosome-critic is hence positioned

to shape and receive DA prediction error signals, whereas the matrix-actor is

placed tomodulate the primary BG output, and to receive the DA error signals

shaped by the striosome—an arrangement that matches the RL actor-critic

architecture perfectly.

A secondary reason why the striosome is thought especially suitable

for the critic role are reports that the cortical and subcortical input to the

striosome compartment favors the limbic: compared to the surrounding

matrix tissue, the striosome appears to receive somewhat denser input

from the emotion-processing regions of the limbic system, including the

prelimbic cortex and the amygdala53,58,63–65. A characterization of the matrix

and the striosome pathways as preferentially “sensorimotor” and “limbic”

maps intuitively well onto the distinction of the “behaving” actor and the

“evaluating” critic52,53,66.

It should be noted that in many recent theoretical discussions andmodels

of the BG (including “OpAL”, discussed below) the roles of the actor and the

critic are assigned by striatal region, rather than chemical compartment. In

these region-based accounts, the critic is located to the ventral, and the

actor to the dorsal striatum13,15,45,67–69. However, here we will largely focus on

the original striosome-matrix actor-critic division, as the striosome-as-critic

conception remains highly in�uential in the literature most relevant to this

thesis—as will be seen later.

The anatomical arrangement of the striatal striosome and matrix com-

partments in relation to the dopaminergic SNc may �t the actor-critic model

architecturally (Fig. 1.3)—but how would a striosome-critic shape the DA

prediction error signal, and how a matrix-actor implement policy-based ac-

tion selection, in practical, biological terms? These two questions will be

explored next.

How the Striosome-Critic Shapes the DA Prediction Error

All of the striatum’s output neurons, commonly referred to as the spiny pro-

jection neurons (SPNs), are inhibitory, whether they form part of the striosome

or the matrix37. The inhibitory nature of the striosomal output is most con-

venient for the brain-based computation of the prediction error (δ) signal,

considering that computing the δ signal requires the subtraction of the “value

expected” (V̂ ) signal from a “reward received” (r) signal, i.e. δ = r− V̂ . As it is,
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Figure 1.3 | The actor-critic architecture, implemented in the basal ganglia.
Left The actor and the critic modules receive state-related information from the environment
(S). The actor recalls the “policy” associated with the current state—effectively a table listing
the available actions and their selection probabilities (A). Based on these probabilities, or “ac-
tion predispositions”, an action is selected. Its execution affects the environment, ideally to
positive effect. Whether that is the case or not is evaluated by the critic. The critic recalls the
state value estimate associated with the current state (V). This current state value estimate,
the previous state value estimate, and the current reward are used to compute the temporal dif-
ference (TD) prediction error signal (δ). The “temporal difference” error computation, in which
the state values of adjacent time points (i.e. current and previous) are compared, can generate
reinforcement signals in response to state transitions that do not involve primary reinforcers
directly, but are predictive of them: e.g. if the actor’s action triggered the onset of a tone that in
the past preceded a reward, the critic can reinforce the action, despite the reward not yet being
available. The TD prediction error is used to refine both the actor’s policy and the critic’s state
value estimate.
Right In the classic actor-critic models of the BG13, the striatal matrix compartment serves as
the actor (→action selection), and the striosome compartment and the SNc serve as the critic
(→evaluation). The striosome supplies the state value estimates, and the SNc integrates them
with reward-related inputs (e.g. from the lateral hypothalamus) to compute the prediction error.
The prediction error is signaled through the dopaminergic feedback to the striatum, which re-
fines the matrix’s state-to-action and the critic’s state-to-value mappings via synaptic plasticity
at the corticostriatal synapse.

Adapted from Takahashi et al.68.

https://doi.org/10.3389/neuro.01.014.2008


THE ACTOR-CRITIC MODEL OF THE BASAL GANGLIA 9

the SNc may compute this subtraction simply by integrating an excitatory +r

input with the striosome’s inhibitory −V̂ input, presuming that both r, V̂ and

δ are encoded in the magnitude of the neuronal activation6,12. The source

of the r signal has generally received much less attention than that of V̂ .

Notably, Houk and colleagues12 speculated that it may originate from the

lateral hypothalamus (LHA). Activating certain LHA inputs to the DA system

indeed enhances DA release and is su�cient to reinforce behavior70.

How the Matrix-Actor Learns Policies and Selects Actions

In RL, a policy for the selection of discrete actions is simply a table in which

the selection probability of every action available in the current state is listed.

On every trial, a stochastic process picks a single action based on this state-

appropriate probability table7. In (models of) the brain, it is typically assumed

that each discrete action available is represented by a discrete ensemble

of matrix neurons (i.e. a “grandmother ensemble”29), and that the activity of

each ensemble relative to that of the others re�ects the selection probability

of the action associated with that ensemble6,13,30,39,45,71. In short, the higher

the activity of an action-speci�c matrix ensemble, the more likely its action

is to be selected. That is because co-active action-ensembles are usually

thought to resolve a “winner-take-all” competition of some sort, in order for

a single action to be selected29,30,39.

The simplest mechanism proposed to help resolve the winner-take-all

competition is “lateral inhibition”, which entails that neurons of competing en-

sembles inhibit one another at the level of the striatum22,30,71. Additionally, the

selection mechanism may incorporate BG nuclei and pathways downstream

of the striatum, rendering it a competition of BG “action channels” rather than

one limited to striatal “action ensembles”. Interactions between BG-intrinsic

pathways are held to play a very signi�cant role in action selection, and thus

feature in most BG selection models30,39,45,72.

The pathway interactions incorporated in BG action selection models

are typically based o� the “classic” dual pathway model of the BG motor

control circuit30,45,72. The classic model34–36 will therefore be brie�y sketched

below, before I turn to the OpAL model45, which combines and formalizes

many popular ideas about actor policy learning and “action channel”-based,

discrete action selection in the BG.
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The Classic Basal Ganglia Model of Motor Control The classic BG motor

control model34–36 emerged in the late 1980s to early 1990s. The prevailing

theories about the BG at that time were focused on the BG motor loop, and

how it regulated the kinematics of ongoing, cortically-initiated movements,

although the existence of non-motor loops was recognized.

Mechanistically, the classic model emphasized (1), the existence of two

antagonistic BG pathways, and (2), DA’s contrary e�ects on the ongoing

activity within these pathways:

(1), the “direct” and “indirect” pathways are wired to inhibit and disinhibit BG

output neurons, respectively, by projecting mono- versus polysynaptically

from the striatal SPNs to the GPi and the SNr.

(2), DA enhances activity in the direct pathway SPNs (dSPNs), and reduces

activity in the indirect pathway SPNs (iSPNs), by binding pathway-speci�c

DA receptors (i.e. D1 versus D2 receptors).

Functionally, the direct and indirect BG pathways were proposed to fa-

cilitate and suppress movements, respectively, through their antagonistic

regulation of the BG output onto the motor e�ectors in cortex and elsewhere.

Accordingly, DA was thought to exert pro-kinetic e�ects by enhancing dSPN

and suppressing iSPN activity.

This DA-balanced, antagonistic dual pathway architecture remains the

linchpin of most contemporary BG models, including the OpAL “dual actor”

model of action selection, which is the subject of the following paragraphs.

OpAL: Opponent Actor Policy Learning And Action Selection The “Oppo-

nent Actor Learning” (OpAL) model, published by Collins and Frank in 201445,

is a recent and representative BG action selection model. OpAL is a high-

level abstraction of the classic model in that unitary, discrete actions, rather

than continuous movements, are facilitated and suppressed by the direct

and indirect pathways. Consequently, OpAL emphasizes that the BG gate

the activity of their targets, for the purpose of action selection (categorical,

e.g. Go vs No-Go), whereas the classic model stresses that BG targets are

modulated, in order to adjust movement kinematics (continuous, e.g. velocity).

Finally, OpAL incorporates DA-mediated learning in addition to DA’s acute

e�ects on ongoing SPN activity.

Key to the OpAL model is the notion that DA prediction errors induce

opposite plasticity changes (i.e. policy learning) at corticostriatal synapses
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onto dSPNs and iSPNs. Speci�cally, a positive DA prediction error, signaling

an outcome that has exceeded expectation, is thought to strengthen recently

active synapses onto dSPNs and to weaken recently active synapses onto

iSPNs; a negative prediction error would cause the inverse adjustments.

Consequently, dSPNs learn facilitatory “Go” policies, whereas iSPNs learn

suppressive “No-Go” policies.

During action selection, facilitatory dSPNs and suppressive iSPNs within

the same action channel compete through their antagonistic projection path-

ways, and the action channel whose output neurons within the GPi and the

SNr aremost net-inhibited is selected. This has the e�ect of disinhibiting the

extra-BG e�ectors of the action associated with the winning BG channel.

OpAL does not specify how the inhibitory tone onto the e�ectors of the “los-

ing” action channels is retained or promptly restored; however, it has been

suggested elsewhere that relatively di�use excitatory (i.e. glutamatergic)

input from the STN to the GPi and SNr may negate the inhibition of all but the

winning channel29,37. The STN is activated via collaterals of the cortical input

to the striatum (i.e. the “hyperdirect pathway”), as well as disinhibited via the

indirect pathway, which suppresses the STN-projecting, inhibitory GPe73.

Importantly, OpAL’s dSPN/iSPN “dual actor” representation is not redun-

dant, for two reasons: (1), OpAL’s error-driven learning process is expected

to proceed asymmetrically and nonlinearly. Asymmetrically, because the

learning rates at dSPN and iSPN synapses are allowed to di�er. Nonlinearly,

because the magnitude of the prediction error-induced plasticity changes

depend on the magnitude of the SPN’s recent activity, and therefore on

the synaptic weights pre-update; in other words, more heavily-weighted

synapses are more signi�cantly modi�ed by an update. (2), in OpAL, DA

levels also impact the action selection process directly, by enhancing and

suppressing the ongoing activity in dSPNs and iSPNs, respectively, e�ec-

tively shifting the striatal population activity to favor either dSPN “Go” or iSPN

“No-Go” policies. Because of these independent e�ects of DA on learning

and action selection, OpAL does not imply that the activity of dSPNs and

iSPNs within a given action channel is complementary and redundant.

In sum, a policy-based discrete action selection process mediated by

the OpAL dual actor would proceed as follows (Fig. 1.4): the cortex “initiates”

actions (A) and (B). In the BG, the di�erence between the facilitatory dSPN and

suppressive iSPN activity is strongly positive within the action channel gating
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Figure 1.4 | Opponent actor action selection as envisioned by OpAL.
The OpAL model45 reinterprets the antagonistic direct and indirect pathways of the classical
BG motor model as antagonistic Go and No-Go policy networks. Each action channel—e.g. (A),
(B)—consists of dSPN-“Go” (green) and iSPN-“No-Go” (red) policy neurons, which facilitate and
suppress the selection of their affiliated actions, respectively. DA release balances their relative
influence over ongoing behavior: if the Go pathway is favored, the OpAL-regulated agent’s strat-
egy ismostly determined by positive experiences (i.e. benefits), if the No-Go pathway is favored,
negative experiences (i.e. costs) weigh more heavily on the agent’s actions. This mechanism,
andmechanisms enabling somewhat independent learning from the same error signals in each
network, are argued to provide added flexibility over a single actor network. In the illustration,
action (A) is selected through dSPN-driven disinhibition of the effectors of (A) downstream of
the GPi/SNr, which is only weakly opposed by the (A)-associated iSPN neurons.
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the execution of (A) but strongly negative within the action channel gating (B).

The GPi and SNr output neurons belonging to channel (A) are consequently

most inhibited and action (A) is selected in winner-take-all fashion. The

(motor) e�ectors of (A) in cortex are then selectively disinhibited, leading to

the successful execution of action (A), with no interference from the e�ectors

of (B), which remain inhibited throughout. Phasic DA prediction errors in

response to the outcome of action (A) induce opposite plasticity changes

at activated dSPNs and iSPNs across channels. Tonic DA levels regulate

the relative excitability of dSPNs versus iSPNs throughout the process, thus

adjusting the relative weights of the competing Go and No-Go actor policies.

1.2.3 The Basal Ganglia Actor-Critic Model Summarized

I have now outlined the key components of actor-critic models of the BG.

Distilled into a broad strokes, generic model, the BG actor-critic circuit might

operate roughly as follows:

• The striatal “actor” and “critic” modules—classically the striatal matrix

and striosome compartments—receive rich information about the cur-

rent state, primarily via their corticostriatal inputs.

• The matrix-actor maps state to action, by modulating the inhibitory

drive of the GPi and the SNr onto (motor) e�ectors in accordance with

policies learned by trial-and-error and DA feedback. If discrete actions

are to be selected, the policy is neurally-instantiated by action-speci�c

BG channels—arising from dSPNs and iSPNs—competing to selectively

disinhibit their extra-BG e�ector targets. Within each action channel,

dSPNs act to disinhibit (facilitate) and iSPNs to inhibit (suppress) the

associated action, their balance thus determining how likely the channel

is to be selected.

• The striosome-critic maps state to value expectations—learned via

the same DA error signals that trained the actor—and transmits them

directly to the SNc. The SNc, in turn, computes the DA prediction error

by integrating an excitatory “reward received” signal (of nonspeci�c

origin) with the striosome’s inhibitory “value expected” signal.

• The DA prediction error is �nally used to adjust the synaptic weights on

the corticostriatal inputs to the striosome-critic and the matrix-actor by
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inducing DA-dependent, long-term synaptic plasticity at recently active

synapses. The weights on dSPNs and iSPNs are di�erentially adjusted,

rebalancing their activity within the action channels. By this process,

the striosome’s state-value and the matrix’s state-action mappings are

optimized.

1.3 The Striato-Pallido-Habenular Critic Pathway

In the last decade, another non-canonical BG output pathway has been

linked to a critic-like, evaluative function: the GPi projection to the lateral

habenula (LHb)74–77. A major GPi-LHb projection was �rst described in the

1970s78,79. Its discoverers noted the pathway for its con�uence with a sig-

ni�cant “limbic” input, arising from the GPi-adjacent lateral hypothalamus

(LHA), because they considered such “striatal” and “limbic” system conver-

gence a rarity, and a unique feature of the LHb. Recent interest in the GPi-

LHb pathway was galvanized in the late 2000s, when the group of Okihide

Hikosaka demonstrated that the LHb encoded a peculiar kind of prediction

error signal80,81, and that this signal was probably driven by excitatory input

from the GPi74. These discoveries rekindled e�orts to anatomically and func-

tionally characterize previously-delineated “limbic” striosome-GPi-LHb and

“motor” matrix-GPi-thalamus BG output pathways66; e�orts which implicated

the pathways further in critic-like “evaluation” and actor-like “motor execution”

functions, respectively76,77,82.

In the next sections, I will �rst highlight a few seminal studies which

mapped-out the striato-pallido-habenular critic circuit, and traced its origins

to the striosome. Next, I will describe how this “additional” BG-critic pathway

�ts into the actor-critic model described in the last section.

1.3.1 Matrix-Actor and Striosome-Critic Outputs in the GPi

In 2007 and 2009, Matsumoto and Hikosaka80,81 showed that the LHb’s re-

sponses to cued anduncued rewards andpunishmentswere akin to “inverted”

or “reward-negative” versions of the responses observed in the DA midbrain:

LHb neurons were most activated by unpredicted punishments (rather than

by rewards), and most inhibited by unanticipated rewards (rather than by

punishments); well-predicted outcomes of either valence produced little to
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no responses. This was recognized as most signi�cant, as the LHb is known

to project to83, and to functionally inhibit81,84,85 the DA system, suggesting

the LHb error signal might contribute to the DA one.

In a follow-up paper, Hong and Hikosaka74 identi�ed LHb-projecting GPi

neurons as the likely source of the LHb prediction error signal. They reported

that a majority of task-responsive LHb-projecting GPi neurons �red like the

LHb neurons do, but with an earlier onset of activity (by about 20 ms). They

hence concluded that inputs from the GPi gave rise to the LHb activity, and

that these inputs were presumably excitatory. This result led the authors

to suggest that the GPi serves as the BG output of two functionally-distinct

pathways: (1) a striato-pallido-thalamic “motor execution” pathway; and (2) a

striato-pallido-habenular “reward evaluation” pathway. Hong and Hikosaka

speculated that the “evaluation” pathway shapes the DA prediction error

signal, and thereby reinforcement in the striatum. This hypothesis, although

eschewing actor-critic terminology, arguably postulated the striato-pallido-

habenular pathway to form part of a BG critic circuit.

Hong and Hikosaka’s “motor” and “evaluation” pathway distinction harkens

back to earlier studies of the GPi output pathways. Notably, Van Der Kooy

and Carter86 split the rat GPi into a caudal “motor” and a rostral “limbic”

part, based on the regions’ selective innervation of the thalamus and the

LHb, respectively. In the monkey, Parent and De Bellefeuille87 di�erenti-

ated the same projection-based zones, although they found them di�erently

arranged anatomically: in the monkey brain, the “motor” zone formed the

center, and the “limbic” zone the periphery of the GPi. Both of these studies

were published in the early 1980s—right around the time the striatal matrix

and striosome compartments became similarly associated with “sensori-

motor” and “limbic” functions, respectively, due to their biased inputs, and

divergent outputs53,65.

In retrospect, it seems amatter of course to connect the “limbic” striosome

compartment with the “limbic” GPi output. In 1993, Rajakumar, Elisevich

and Flumerfelt66 became the �rst to do so, presenting evidence that the

parallel GPi-LHb and GPi-thalamus output pathways receive preferential

input from the striatal striosome and the matrix compartment, respectively. A

number of studies conducted in the last decade likewise support a relatively

more signi�cant input from the striosome to the LHb-projecting GPi75–77,88.

Hong and Hikosaka’s striato-pallido-habenular “evaluation” pathway is hence
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anatomically part of the “original” striosome-critic circuit of the BG75–77.

To summarize, the GPi-LHb pathway arises from a cellularly-distinct pop-

ulation of (“limbic”) GPi neurons which do not project to the canonical GPi

targets in the thalamus and brain stem86–91. Moreover, GPi-LHb neurons are

preferentially innervated by neurons of the striatal striosome66,76,77,88. Hence,

the GPi provides segregated outputs for the matrix-actor and the striosome-

critic circuits described in the previous section. Fittingly, functional studies of

the GPi-LHb “critic” pathway, including Hong and Hikosaka’s, have associated

it with action and stimulus evaluation, the computation of prediction errors,

and DA-driven reinforcement74,77,92.

1.3.2 The Purpose of the Dual Striosome-Critic Pathways

The existence of a striosome-GPi-LHb-SNc pathway implies that the sup-

posed striosome-critic may exert bidirectional control over DA release in the

striatum75: Via the direct striosome-SNc projection, the striosome inhibits DA

neurons58,60,93, whereas via the indirect striosome-GPi-LHb-SNc pathway,

the striosome may disinhibit DA neurons. This disinhibition could ostensibly

be accomplished by the striosome shutting o� a tonic excitatory drive from

the GPi onto LHb neurons74,76,92,94, thereby reducing LHb-mediated inhibi-

tion of the DA system80,84,85. Remarkably, in their classic actor-critic model,

Houk, Adams and Barto12 hypothesized the existence of a disinhibitory critic

pathway—although theirs projected via the GPe and the STN to the SNc,

i.e. akin to the SNr-targeting indirect pathway of the matrix. In their recent

work on prediction error-coding in GPi-LHb neurons, Stephenson-Jones and

colleagues77 likewise conjectured that an indirect striosome-GPe-STN-(GPi-

LHb) pathway complements the direct striosome-(GPi-LHb) one (Fig. 1.5 A).

This begs the question: why might the striosome-critic need bidirectional

control over its prediction error-computing targets, the SNc and the GPi-

LHb? The answer to that question is: to drive secondary (or conditioned)

reinforcement.

In order to be an e�ective teaching signal, the prediction error must not

only reinforce events (e.g. pointing at the chocolate �avor) which directly

led to primary rewards (e.g. ice cream), but also those events “a few steps

removed”, i.e. events preceding the event preceding the reward (e.g. the

“open” sign in the shop window). After all, obtaining a reward may involve
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Figure 1.5 | Dual critic pathways compute TD errors and drive secondary reinforcement.
A Stephenson-Jones et al.’s77 recent proposal of “action selection” and “evaluation” circuits
within the BG essentially recapitulates Houk et al.’s12 classic actor-critic model, with the LHb-
projecting GPi (i.e. GPh) taking the spot of the SNc to drive reinforcement. Like Houk et al.,
Stephenson-Jones et al. suggest a dedicated, indirect “critic” pathway via the GPe and the STN.
B Equipped with dual pathways, the striosome may uniformly signal a reward-positive state
value estimate V̂ , yet still drive opposing, reward-reward positive and reward-negative TD pre-
diction errors δ in the SNc and GPi, respectively. All that is required is that one pathway lags
behind the other by one time step t, such that one pathway represents the current value es-
timate V̂(t) and the other the previous state value estimate V̂(t − 1). The TD computation
δ(t) = r(t) + V̂(t) − V̂(t − 1) also accounts for prediction error responses to secondary rein-
forcers, such as reward-predicting cues, which are needed to learn about chains of events that
lead to the delivery of a primary reinforcer/reward6,12.

A reprinted from Stephenson-Jones et al.77, ©2016, with permission from Springer Nature.

progressing through a whole sequence of actions and states. Hence, reinforc-

ing prediction error signals are needed not only in response to unforeseen

primary rewards (i.e. primary reinforcers), but also whenever initially neutral,

but reward-predictive events (i.e. secondary reinforcers) occur unexpectedly.

Indeed, after some training, both SNc and GPi-LHb neurons are reported

to start signaling the appearance of a reward-predicting cue—through in-

creases and decreases in activity, respectively—whereas the delivery of

the “predictable” reward ceases to incur prediction error signals17,74. Thus,

both the SNc and the GPi-LHb do respond to secondary reinforcers, as is

required to drive e�ective reinforcement learning, and these responses need

to be accounted for in models—for example by supposing the critic exerts

bidirectional control.

Houk et al.12, and others13, assumed that the positive DA prediction er-

rors evoked by reward-predictive cues/secondary reinforcers were induced

https://doi.org/10.1038/nature19845
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via disinhibition of the SNc mediated by the striosome-critic’s indirect path-

way. Here is an intuition of how this could work in theory (Fig. 1.5 B)6,12,17:

Prediction error signals δ caused by the unexpected appearance of a sec-

ondary reinforcer re�ect the di�erence in the predicted value V̂ of the current

(i.e. time t) and the previous (time t− 1) state with no primary reinforcers (r)

directly involved. The striosome is the part of the critic circuit responsible

for state-value predictions V̂ . Consequently, it can impose the correct error

signal δ(t) on the SNc simply by driving “current state-value estimate”-scaled

disinhibition, +V̂(t), and “previous state-value estimate”-scaled inhibition,

−V̂(t− 1), via its opposing pathways. Importantly, both pathways may carry

the same state-value estimate V̂(t), provided that the physiological impact

of the direct pathway on SNc activity lags behind that of the indirect pathway.

If that is the case, the former e�ectively signals−V̂(t−1) and the latter+V̂(t),

and by integrating these signals, the SNc computes their di�erence δ(t). The

direct pathway’s lagging state-value signal −V̂(t− 1)moreover negates the

excitation evoked by the eventual onset of the primary reinforcer r. Since

state-value is de�ned as the (discounted) sum of all upcoming primary rein-

forcers, as V̂(t) =
∑∞

i=1 rt+i, it is appropriate to use the previous state-value

estimate V̂(t− 1) in the calculation of the current prediction error δ(t), be it

evoked by a primary or secondary reinforcer. Prediction errors computed in

this way, as the di�erence of the critic’s state-value predictions V̂ at adjacent

time points t, are referred to as temporal di�erence (TD) errors. The complete

TD formula is δ(t) = r(t)+γV̂(t)− V̂(t−1), with γ being the discount factor6,17.

The dual pathway TD mechanism outlined above provides a hypothetical

explanation of how the striosome-critic could “excite” SNc DA neurons in

response to unexpected secondary reinforcers, as well as suppress their

activity in response to well-predicted primary rewards (or, indeed, reward

omissions), while representing nothing but the state-value estimate V̂(t)

throughout. A practically identical dual pathway account also serves to

explain how the striosome-critic—encoding the very same V̂(t) signal—may

engender the exact opposite responses in the LHb-projecting GPi. Only one

minor adjustment is necessary: to suppose that the direct striosome-(GPi-

LHb) pathway carries −V̂(t) and the indirect pathway +V̂(t − 1); that is, to

suppose that the impact of the disinhibitory indirect pathway on GPi-LHb

activity is late relative to that of the inhibitory direct pathway (Fig. 1.5 B).

In conclusion, in the classic actor-critic model à la Houk et al.12, the
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striato-pallido-habenular pathway could function as the striosome-critic’s

indirect pathway to the error-coding DA system. Alternatively, the path-

way may be viewed as the striosome’s direct pathway to the likewise error-

coding GPi-LHb. In either case, the pathway and its opposing complement

(e.g. striosome-SNc or striosome-GPe-STN-(GPi-LHb)) would be expected

to jointly contribute to the computation of the TD prediction error, which is

the error signal that best captures the SNc’s and the GPi-LHb’s responses

to primary and secondary reinforcers. Finally, the dual pathway architecture

presents a relatively simple explanation of how the striosome-critic could

cause opposing patterns of activity in the SNc and the GPi-LHb.

1.4 Aim: Observing the Critic in Action

The principal aim of the work presented here was to examine the proposed

striato-pallido-habenular critic pathway in action. In action is to be under-

stood in two ways: �rstly, the data included in this thesis was collected in

behavioral experiments—they capture the experimental mice, the activity of

the mice’s critic neurons, and the e�ects of manipulating the activity of those

neurons, in action. Secondly, we were interested in state evaluation and

prediction error signals that relate to, and serve to optimize, action selection—

action selection in the “common sense” sense of deciding between available

paths of actions and options, such as whether to take a left or a right turn in

a maze, or which ice cream �avor to choose.

An RL agent implementing the actor-critic architecture could optimize

vastly di�erent kinds of policies, as the framework is agnostic to the “level of

abstraction” and nature of the state-policy associations learned7,95,96. Indeed,

the various BG loopsmaywell instantiate several di�erent kinds of interacting

actor-critic agents, collaborating and competing to shape our behavior6,15.

The dorsomedial and the dorsolateral striatum are—for example—linked

to the acquisition of goal-directed versus habitual behavioral strategies, re-

spectively, and these strategies are thought to express di�erent kinds of

associations (i.e. action-outcome versus stimulus-response associations)97.

The two parts of dorsal striatum may thus implement two di�erent kinds

of actors15. An actor may also learn how to best modulate and constrain

movement kinematics in a given context95,98,99, which mental representa-

tions to keep or update in working memory46, how to correctly pitch and
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sequence notes into a song47, or—generally—how to task-appropriately distill

the key information from its cortical input into a useful lower-dimensional

representation100.

Policy-based decision-making at the “chocolate ice-cream level” is but

one attractive (and experimentally tractable) use of the actor-critic architec-

ture. It is this speci�c use we expected to �nd evidence of in our examinations

of the striato-pallido-habenular critic circuit, in action.



Chapter 2

Methods

2.1 Functional Circuit Interrogation Techniques

Targeting Speci�c Populations Using Viruses And Transgenic Mice

In the experiments described in this thesis, we always limited our neuronal ac-

tivity recordings or manipulations to genetically-speci�ed populations or cell

types of interest. An example: we expressed the �uorescent neuronal activity

indicator GCaMP selectively in µ-opioid receptor-expressing neurons of the

dorsal striatum, rather than in all the neurons in the region1. In all experiments,

this population-speci�city was accomplished using combinations of viruses

and genetically-modi�ed (i.e. transgenic) “driver” mouse lines. The viruses

expressed the engineered proteins required for the experiments, whereas

the transgenic mouse lines limited the virus-mediated protein expression to

the populations of interest101.

The various viruses used (e.g. AAV, HSV) were usually injected directly into

the brain region of interest (e.g. dorsal striatum, GPi). Once administered, the

viruses locally transfected neurons with DNA sequences that drove the ex-

pression of the engineered proteins—proteinswhichwere subsequently used

to read out or manipulate neuronal activity during experiments (e.g. GCaMP,

ChR2). In all three studies treated here, the expression of these “protein tools”

was conditioned upon the presence of particular recombinase enzymes,

which do not naturally occur in mice: the Cre or the Flp recombinases.

The Cre and Flp recombinases were originally derived from a bacterio-

phage and a yeast, respectively. Their function is to insert, remove, or invert

DNA sequences which are �anked by recombinase-speci�c recognition

21
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target sequences102. So-called DIO or FLEX viruses carry synthetic DNA

sequences that include a “�anked” gene which is oriented in the antisense di-

rection. The recognition targets in the viruses’ DNA sequences are arranged

in a way that cause the particular recombinase used to invert the �anked

gene to its sense direction, which leads to the expression of the encoded

protein. In the absence of the recombinase, the protein is not expressed, as

the coding gene remains in the antisense orientation101,102. DIO or FLEX virus-

mediated protein expression is therefore recombinase-dependent (i.e. Cre-

or Flp-dependent).

The various transgenic mouse lines we employed in our studies all ex-

pressed recombinase transgenes selectively in association with de�ned

target genes. In these “recombinase-driver” mouse lines, the use of DIO

viruses consequently resulted in the restricted, recombinase-dependent

expression of the engineered proteins in cells which were positive for the

line’s respective target gene. To return to the example provided above:

to achieve the selective expression of the GCaMP calcium indicator in µ-

opioid receptor-positive neurons in dorsal striatum, we injected Oprm1-Cre

mice with an AAV-DIO-GCaMP virus1. The shorthand “Oprm1-Cre” describes

transgenic mice which express the Cre recombinase wherever the protein

encoded by the Oprm1 gene—that is, the µ-opioid receptor—is expressed103,

and “AAV-DIO-GCaMP” denotes a viral vector driving the Cre-dependent

expression of the GCaMP protein, as indicated by the DIO tag (Fig. 2.1 A).

In many instances, we aimed to experimentally targeted neurons project-

ing to a region of interest, and not neurons with cell bodies in the area. For

this purpose we employed retrograde viruses, i.e. viruses that are are trans-

ported retrogradely from the axon terminal to the cell body. Retrogradely-

transported viruses include the AAVrg and HSV viruses, but not regular

AAVs101,104,105. Thus, to express GCaMP in GPi neurons that project to the LHb

and are Sst-positive, we injected a retrograde and Cre-dependent AAVrg-

DIO-GCaMP virus into the LHb of Sst-Cre mice2.

Calcium Imaging: Capturing Neuronal Activity By Proxy Using GCaMPs

Calcium serves as a key intracellular messenger that translates the electrical

activation of neurons into neurotransmitter release and lasting physiolog-

ical changes, such as synaptic plasticity. Calcium enters neurons through

voltage-gated channels, and the concentration of intracellular free calcium is
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Figure 2.1 | GCaMP-based calcium imaging in transgenic mice using miniscopes.
A AnAAV-DIO-GCaMP virus is injected to express the fluorescent calcium indicator GCaMP6s
Cre-dependently in the dorsal striatum of a transgenic Cre driver mouse (e.g. Oprm1-Cre to tar-
get striosomal cells). For imaging purposes, a relay lens is implanted above the injection site.
B Amouse with the “miniscope” miniaturized microscope attached in order to image the neu-
ronal activity-dependent fluorescence of GCaMP-expressing neurons.
C An illustration showing the region-of-interest (ROI) masks marking individual neurons de-
tected in the field of view of a miniscope recording. Fluorescence transients of the color-coded
ROIs are depicted in the inset (transparent line). The long fluorescence decay “tail” of the tran-
sients can be removed by means of signal deconvolution to obtain a more temporally precise
estimate of the neuronal activity (opaque vertical bars).

therefore neuronal activity-dependent106. Consequently, calcium levels can

be used as a “proxy-measurement” to approximate neuronal activity in live

animals107,108. Technically, intracellular calcium �uctuations are commonly

captured by imaging genetically-encoded, �uorescent calcium sensors, like

the popular GCaMP proteins108,109, under a microscope. The brightness of

the light emitted from the green �uorescent GCaMP proteins is enhanced by

calcium binding, and is thus indicative of the availability of free calcium and

the activity of the imaged neurons108,109.

In our experiments, we recorded the neuronal activity-dependent GCaMP

�uorescence using two di�erent imaging approaches. The “miniscope” ap-

proach utilizes aminiaturizedmicroscope (i.e. “miniscopes”), which is attached

to the head of the mouse during experiments and serves to �lm �uoresc-

ing neurons through an endoscopic relay lens chronically implanted in the

brain (Fig. 2.1)110,111. The “�ber photometry” approach utilizes a chronically-

implanted optical �ber instead of a lens, and the �uorescence signal is col-

lected by a sensor at the end of a brain-external, detachable optical �ber,

which is connected to brain-implanted �ber during recording sessions112,113.

Fiber photometry hence dispenses with the head-mounted imaging sensor

and replaces the implanted lens with a �ber of typically smaller diame-
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ter, which makes photometry somewhat simpler, less invasive and tissue-

damaging than the miniscope technique. However, these bene�ts come at

the cost of spatial resolution, as only bulk �uorescence, aggregated over the

entire target neuronal population, can be measured through the photometry

�ber, whereas the miniscope’s lens resolves the �uorescence emitted by in-

dividual GCaMP-expressing neurons (Fig. 2.1 C)111. Here, we used miniscopes

to record three distinct populations of dorsal striatal projection neurons1, as

well as LHb-projecting LHA neurons3 at cellular resolution, and photometry

to record the population-average activity of LHb-projecting GPi neurons2 in

mice performing a number of behavioral tasks and tests.

Optogenetics: Activating Neurons With Light Using ChR2

Derived from a green alga, ChR2 (i.e. Channelrhodopsin-2) is a blue light-

gated cation-selective ion channel. As it transports positively-charged ions

(i.e. cations), it depolarizes cells when activated by light114. Critically, ChR2

evinces very fast channel opening kinetics and high conductance, allowing

experimenters to use it to evoke spiking in mammalian neurons with brief

pulses of blue light with millisecond precision115. In one study reported

here3, we employed chronically-implanted optical �bers to optogenetically-

activate LHb-projecting populations of GPi and LHA neurons acutely whilst

mice engaged in di�erent behavioral tasks unrestrained.

Silencing Neurons Chronically Using TeTxLC

TeTxLC (i.e. the tetanus toxin light chain) is the fragment of the tetanus toxin

protein that e�ects the toxin’s potent inhibition of neurotransmission. TeTxLC

proteolytically cleaves the vesicle-associated membrane protein (VAMP),

thereby disabling neurons’ synaptic vesicle release machinery and blocking

all neurotransmitter release, which e�ectively silences the neuronswithout in-

ducing cell death116–118. We used virally-expressed and genetically-targeted

TeTxLC protein to chronically inactivate the synaptic output of GPi neurons

projecting to the LHb in mice performing a maze-based reversal task2.

2.2 Mouse Behavioral Tasks And Tests
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Figure 2.2 | Maze-based and nosepoke-based reversal tasks.
A The “arrow maze” reversal task. Mice were trained to shuttle back and forth between the
water spout located at the start of the central corridor—the initiation spout—and the choice
spouts placed at the ends of the side corridors. Initially, mice only obtained a reward if they
approached the choice spout A first after leaving the area of the initiation spout. Approaching
B did not yield rewards. After two weeks, the reward location was reversed; from now on, re-
wards were made available at spout B but never at A. After every trial, mice needed to return to
the initiation spout to reactivate the choice spouts; this, too, yielded a reward.
B The nosepoke-based probabilistic reversal task77,121. Mice initiated trials at the center nose-
poke port, then chose either the left or right side port. Nosepoking one of the two choice ports
resulted in a reward with a probability of 75%, the other was not rewarded. Every 7–23 rewarded
trials2,3,77,121—or after any reward, with a probability of 5%1—the location of the reward swapped
sides without warning. LED light cues indicated whether the center port or the choice ports
were active. To perform better than chance-level, mice had to keep track of the trial outcome
history to infer whether rewards were omitted by chance or a reversal had occurred.

Reversal Learning: Assessing Behavioral Flexibility

In reversal tasks, a test subject’s well-trained action-outcome associations

and habitual response biases are challenged by “reversing” (i.e. swapping)

the outcomes associated with the choices available in the context of the

task, in many instances repeatedly. The purpose of the reversal challenge

is to evaluate the subject’s ability to adaptively respond to the changed

contingencies, and thereby to assess reward learning, inhibitory control and

other aspects of behavioral �exibility119,120. We recorded neuronal activity

while mice performed two di�erent kinds of reversal tasks to investigate what

roles various neuronal populations in the dorsal striatum1 and the GPi2 might

play in �exible decision-making, action execution and outcome evaluation.

Maze-Based Reversal Task In our “arrow maze” reversal task (Fig. 2.2 A)2,

mice were placed into a maze consisting of three corridors, each equipped

with a water spout. Spout “C” was located at the starting point of the maze,

at the beginning of the center corridor and opposite of a three-way “choice
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junction”. The spouts “A” and “B” were located at the ends of the two choice

corridors branching o� of the center corridor at the junction towards the

left and right. Closing in on water spout “A” was consistently reinforced with

water rewards, whereas approaching “B” was not rewarded. Returning to the

starting point and spout “C” initiated a new trial, reactivated spouts “A” and “B”,

and yielded a water reward. This pre-reversal phase of the task lasted a total

of 14 sessions of 20minutes each. Subsequently, the outcome contingencies

were reversed; that is, the rewards were henceforth only made available at

spout “B” and no longer at “A”. Mice were trained on these post-reversal

contingencies for another one to two weeks. Which spout was denoted “A”

and which “B” depended on the experiment and subject. The box housing

the maze measured 40x40cm and was lit by �oor-level, white LED light

strips. To motivate mice to perform the task for water rewards, water was not

supplied outside of the task unless a mouse had consumed less than 1ml in

total over the course of the day’s training session.

Nosepoke-BasedProbabilistic Reversal Task In the nosepoke-based prob-

abilistic reversal task1–3,77,121 mice chose between nosepoke ports (i.e. circular,

snout-sized openings) embedded in the front panel of an operant chamber

instead of between maze corridors. The task moreover involved serial rever-

sals and probabilistic reward contingencies, di�erentiating it further from the

simpler maze task (Fig. 2.2 B).

Mice were placed into a chamber with three nosepoke ports. Reward

spouts were located inside the left and right choice ports, but not the center

port. The animals had a 75% chance of obtaining a drop of sucrose solution if

they poked their snout into the correct choice port, whereas incorrect choices

yielded no rewards. To reactivate the choice ports and thus to initiate a new

trial, the mice were required to enter the center port. Outcome contingencies

reversed repeatedly and at random, but always following a reward; the exact

number of rewards delivered prior to the reversal was drawn either from a

uniform (7–23 trials)2,3 or a geometric (5% probability)1 distribution. In one

study presented here1, the mice were required keep their snout inside the

ports for at least 350ms in order to action them, whereas in the other two2,3

the ports were triggered instantaneously. Throughout the session, either

the initiation port or both choice ports were lit by internal, white LED lights

to indicate the current trial phase—“trial initiation” or “choice”. Neither the
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correct choice nor the occurrence of the reversal were cued. The operant

chamber was circa 15x15 cm in size and illuminated by infrared LEDs. The

port-mounted LEDs were the only sources of light in the visible spectrum

inside the chamber. Prior to training, the mice were placed on food restriction

(kept above 85% of their free-feeding weight) to render the highly palatable

sucrose solution (15%) even more rewarding to the hungry mice.

Open Field: Activity Recordings During Spontaneous Locomotion

In the studies reported in this thesis, the open �eld test primarily served us

to record neuronal activity in the dorsal striatum1 and the GPi2 from mice

moving about freely and spontaneously, as opposed to guided by the rules

and reward contingencies of the reversal tasks. The open �eld consisted in

a square, dimly-lit arena measuring 49cm a side, which mice were left to

explore for 15 to 20 minutes per recording session. Infrared light, invisible

to the mice, supplied additional illumination for the video camera recording

the mice’s locomotor behavior for later analysis. Mice were water or food

restricted during the open �eld session, as they were during the reversal

tasks.

Real-Time Place Avoidance: Is the Induced Activity Aversive?

The purpose of the real-time place avoidance test was to determine whether

the optogenetic activation of either the LHb-projecting GPi or the LHb-

projecting LHA was experienced as inherently “aversive” (i.e. negative)3. We

conducted the test over the course of three consecutive days. Each day, the

mice were connected to optical �bers and placed into a behavior box consist-

ing of two identical compartments, connected by a gap in the dividing wall.

The mice were free to move between and explore the two compartments for

20 minutes each session, and the time they spent in each compartment was

registered. The session on day 1 served as a control, and thus no optogenetic

stimulation was applied. On day 2, mice received optogenetic stimulation

whenever they occupied one of the two compartments. On day 3, the “stim-

ulated compartment” was swapped to the opposite side. If the stimulation

were perceived as aversive, the mice would be expected to spend signif-

icantly less time in the stimulated compartment on days 2 and 3. On the

other hand, no clear preference for either compartment should be evident in
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the control session on day 1. The two box compartments were 25 cm wide

and deep, and only dimly illuminated in the spectrum visible to the mice.

Auditory Fear Conditioning: Does The Population Predict Aversive Events?

We employed auditory fear conditioning to investigate whether the activity

of LHb-projecting LHA neurons may contribute to the punishment prediction

and prediction error signals observed in the LHb81. Over a period of three

consecutive days, mice were exposed to a total of 15 pairings of a tone cue

and a mild foot shock. The tone lasted 10 seconds, and co-terminated with

the 1 second shock, delivered through the grid �oor of the conditioning en-

vironment. Individual tone-shock pairings were separated by randomized

inter-trial-intervals. If LHb-projecting LHA neurons acquired LHb-like pre-

diction and prediction error signals, we expected marked increases in the

magnitude of the neurons’ tone responses (“prediction”) as well as decreases

in their shock responses (“prediction error”) by the end of the fear conditioning

protocol.



Chapter 3

Article I: The Striatum in Action

In Article I, we investigated whether the activity of striatal matrix and strio-

some neurons re�ected their purported functions as actor and critic in

decision-making. Speci�cally, we recorded the activity of direct pathway

(dSPNs, D1+), indirect pathway (iSPNs, A2a+) and striosomal (sSPNs, Oprm1+)

spiny projection neurons in the dorsomedial striatum (DMS) using minis-

copes while mice performed the nosepoke-based probabilistic reversal task.

Our results challenge predictions derived from action selection-focused

and simplistic interpretations of the actor-critic framework. Contradicting

notions of clearly segregated action channels engaged in a competitive

struggle for behavioral control at the decision point, activity in all pathways

was highly continuous in both space and time, and pathway di�erences—if

present—were too subtle for us to detect with our experimental approach.

3.1 Background

We targeted the DMS, as it is the striatal region most associated with �exi-

ble decision-making and reversal task performance122: The DMS receives

prominent input from higher-order associative regions of the frontal cortex—

such as the orbitofrontal and prelimbic areas—which are likewise implicated

in reward processing and decision-making31,122. Via the frontal cortex, the

DMS has been shown to receive persistent value signals, outlasting inter-trial-

intervals of up to �fteen seconds, in a probabilistic two-choice reversal task123.

Population activity in the DMS reportedly ramps-up while animals approach

the decision point of a maze, or while they anticipate a “go” cue, and peak

as the choice is executed124,125. One study found the pre-choice activity of

29
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more than a third of task-responsive DMS SPNs to transiently and selectively

scale with the value of one of two available choices126. Moreover, the activity

in the DMS during the reinforcement phase of a visual-motor association

task re�ected the rate at which the associations were acquired, and boost-

ing the activity by means of electrical stimulation accelerated the learning

process127. Finally, lesions of the DMS are known to impair animals’ ability to

adapt to reversals, or to �exibly switch between behavioral strategies128,129.

Altogether, these pathway-agnostic studies strongly support the notion that

the DMS is involved in (policy-based) action selection and action evaluation.

Matrix: Evidence for Opponent Actor Action Selection

Studies in which the two matrix pathways were selectively recorded or ma-

nipulated lend credence to the proposal that dSPNs and iSPNs function

as “opponent actors”—facilitating and suppressing actions, respectively45,130.

Nonomura and colleagues131 described that DMS dSPNs and iSPNs encode

both the selection and the reinforcement outcomes of speci�c actions per-

formed in the context of a serial reversal task with probabilistic rewards.

Importantly, they found that dSPNs were activated and iSPNs suppressed

by the (secondary) reinforcer—a tone cue which preceded reward delivery.

Conversely, a second tone, predictive of a “no-reward” trial outcome, co-

incided with suppression and excitation in dSPNs and iSPNs, respectively.

These anti-correlated responses to trial outcomes could correspond to the

DA-mediated, antagonistic plasticity updates that Collins and Frank’s OpAL

model45 predicts occur in the dSPN-“Go” and iSPN-“No-Go” policy networks

during reinforcement. Suggestively, enhancing the activation of dSPNs dur-

ing the presentation of the outcome-signaling tone cues increased, whereas

driving iSPNs decreased, the likelihood of rats repeating their choice on the

next trial131. Relatedly, Kravitz, Tye and Kreitzer132 triggered pathway-speci�c

optogenetic stimulation whenever a mouse selected one of two available

choices in a simple operant task. Similarly to what was observed by Nono-

mura et al.131, activating dSPNs increased the likelihood of animals repeating

the choice (and kept them engaged in the task), whereas activating iSPNs

biased animals away from the stimulated choice (and led them to abandon

the task altogether). Collins and Frank45 successfully replicated this behav-

ior in silico, using OpAL, by zeroing the prediction error and substituting it

with a �xed “stimulation” parameter, which a�ected only the opponent actor
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pathways, but not the critic.

Most relevant to our work presented in this chapter is evidence that pre-

choice, unilateral excitation121 (or inhibition133) of DMS dSPNs and iSPNs intro-

duces opposite, lateralized biases to decision-making in mice—lateralized

biases which are not inducible by the same stimulation protocol if it is ap-

plied outside the choice task, i.e. during spontaneous movement. One study

providing evidence to that e�ect is a landmark 2012 study by Lung-Hao Tai

and collaborators121, in which they used the same nosepoke-based reversal

task as later employed by us, and discussed here.

In the nosepoke-based probabilistic reversal task, mice initiate trials at a

center nosepoke port, then choose either one of the two ports located to the

left and right. One of these ports yields a water reward with a probability of

75%, the other is unrewarded. Which side is rewarded, and which is not, is not

signaled to the animal (other than by the actual delivery of the rewards), and

its location reverses occasionally and without warning. The animals therefore

have to infer if a reversal occurred by keeping track of themost recent reward

outcomes (see Methods, Fig. 2.2 B). The behavior of the mice in the task is

typically—including in Tai et al.’s study—�t with a logistic regression model,

which predicts port choice on any given trial based on the outcomes of the

previous trials. For mice performing the task with above-chance accuracy,

the regression coe�cients will re�ect that rewards substantially increase

the likelihood of “staying” with the rewarded choice, whereas no-reward

outcomes impact choice much less markedly (as mice will persevere in their

choice on some occasions, and “give up” and switch ports on others). The

outcome of the most recent trial is consistently shown to a�ect choice the

most.

In the study by Tai et al.121, a mouse’s poking into the center initiation

port occasionally triggered 500ms of unilateral optogenetic activation of

dSPNs, or of iSPNs, in the DMS. This happened at random, on roughly 6% of

trials. They found that on trials in which dSPNs were activated pre-choice,

mice were more likely to opt for the side port contralateral to the stimulated

hemisphere than expected based on the logistic regression �t of their be-

havior (Fig. 3.1 A). Contrariwise, iSPN stimulation decreased the probability

of a contraversive choice below the regression model prediction. Based on

these results, Tai et al. suggest that enhanced dSPN activity translates into a

transient increase, and iSPN activity into a decrease, of the “relative action
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Figure 3.1 | Pathway-specific activation of matrix neurons in the DMS affects choice.
A Unilateral optogenetic activation of dSPNs in the right DMS increases the probability of con-
traversive, left choices in the probabilistic reversal task.
B If DMS dSPNs are policy-coding, they are presumably overrepresenting action (A)—i.e. the
contraversive, left choice—in the right hemisphere.
C Collins and Frank45 have replicated the optogenetically-induced choice bias shown inA using
their OpAL model. They did so assuming a selective, transient increase in the synaptic weights
of the “Go policy”-coding dSPNs of action channel (A) on stimulated trials.
Panel A adapted from Tai et al.121, ©2012, with permission from Springer Nature.

https://doi.org/10.1038/nn.3188
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value” of the contraversive choice.

The relative action value was de�ned as the log odds of a left choice on

a given trial, as estimated by the logistic regression �t. Because it re�ects a

choice probability estimate, the “action value” is better viewed as a “policy

value”134. Accordingly, Collins and Frank45 replicated the Tai et al. experimen-

tal data in an OpAL-based simulation by assuming the stimulation transiently

increased the synaptic weights of either the dSPN-“Go” or the iSPN-“No-Go”

actor neurons of the “contraversive choice” action channel. That last bit is

signi�cant—Tai et al.’s interpretation of the data, and Collins and Frank’s simu-

lation, relies on the assumption that the unilaterally-targeted hemisphere’s

policy neurons preferentially represent the contraversive choice (Fig. 3.1 B–C).

Striosome: Evidence for a Role in (State) Evaluation

Functional data on the role of the striosome in decision-making is still very

sparse, although a function in reward-processing and reinforcement learn-

ing has long been suspected. In 1998, White and Hiroi135 demonstrated

that rats will press a bar to receive direct electrical stimulation of the strio-

some, indicating that activity within the compartment is su�cient to drive

reinforcement. The striosome has moreover been implicated in the reward-

ing, reinforcing and movement-enhancing properties of opioids136, and in the

development of drug-induced motor stereotypies (i.e. in�exible and repet-

itive behaviors) which are observed after chronic exposure to stimulants,

such as cocaine137,138. Lesions of the striosome reduce the acquisition or

expression of these drug-induced stereotypies139,140, and of habitual oper-

ant responses, which are thought to re�ect in�exible stimulus–response

associations141,142. Such lesions further impair performance on a skill-based

locomotor task—without a�ecting movement generally142,143. Taken together,

these �ndings could suggest that the striosome, trough its connections with

the DA system, regulates reward-driven reinforcement learning—at least of

stimulus–response habits, of which motor stereotypies may be an extreme,

aberrant form52.

Due to its comparatively small volume and unpredictably twisting shape

within the striatum, it has been di�cult to reliably target the striosomal com-

partment in vivo. There are, however, a number of studies that accomplished

the feat of selectively recording or manipulating the activity of striosomal

neurons in behaving animals. The groups of Ann Graybiel144 and Kenji Doya145
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have imaged the activity of individual dorsal striatal striosome and matrix

neurons in mice subject to classical conditioning paradigms using calcium

indicators. Both groups found that a signi�cantly greater fraction of striosome

than of matrix neurons responded to reward-predicting cues. Interestingly,

the Doya laboratory145 also reported that the striosomal population was

equally and similarly-selectively engaged by cues-predicting an unpleasant

air pu�. Ann Graybiel’s group146,147 moreover published electrophysiologi-

cal recording and optogenetic manipulation data indicating that, in mice,

striosomal activity a�ects cost-bene�t tradeo�s, with greater striosomal ac-

tivity correlating with an increased willingness to approach a maze location

associated with a high-cost (unpleasantly bright light), high-bene�t (pure

chocolate milk reward) outcome. Most recently, the Graybiel team showed

that striosomal population activity, recorded in the response window of an

auditory discrimination task, re�ected the expected value of the upcoming

outcome—drops of water or bright light—to a greater degree than matrix

activity148. Importantly, the activity within the striosome increased the larger

the expected reward, and decreased the more severe the punishment. In

stark contrast, a recent publication authored by the Bo Li laboratory149 identi-

�ed a subclass of striosomal neurons whose activity was strongly associated

with punishment and negative reinforcement. Strikingly, inactivating these

neurons selectively impaired learning to avoid punishments.

3.2 Aims and Expectations

The experimental evidence discussed above, considered through the per-

spective of a simple actor-critic model, led to the two major aims and the

accompanying—and arguably naive—expectations listed below, and illus-

trated with mock data in Fig. 3.2.

1. Observe the opponent actor pathways of the matrix in action:

• SPN policy neurons form discrete action channels encoding contraver-

sive or ipsiversive choice12,29,45.

• Activity within these channels increases pre-choice—while in the center

initiation port—and peaks during action execution124–126.

• SPN policy neurons overrepresent the contraversive choice (i.e. the left

choice as all recordings were performed in the right hemisphere)45,121,125.
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Figure 3.2 | Mock Data Average responses in contraversive win-stay trials.
Naive predictions based on the lateralized and antagonistic effects of unilateral stimulation of
dSPNs and iSPNs in the probabilistic reversal task121, the opposite responses of dSPNs and
iSPNs to reinforcement outcomes131, and the assumption that “conventional” striosome neu-
rons signal subjective state value148.
Actor (left): A positive (contralateral) outcome (1) excites dSPNs and inhibits iSPNs. After
just receiving a reward at the contralateral port, the mostly contraversive choice-supporting
dSPN-“Go” are strongly activated at trial initiation (3) to select another contraversive choice.
The mostly contraversive choice-suppressing iSPN-“No-Go” neurons are much less activated
pre-choice (3), “losing” the within-channel competition to control action selection. iSPN mock
data not shown.
Critic (right): The striosome encodes state value, reflecting a discounted estimate of future
rewards. Having just received a reward (1), another is expected in the near future. Due to the
discounting of distant rewards, the activity may ramp up as the predicted moment of the next
outcome approaches (2)-(5).
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• dSPN neurons encode “Go” policies, supporting the action associated

with their channel (i.e. mostly contralateral choices), whereas iSPNs

encode “No-Go” policies, suppressing the same action45,121,130,131.

• dSPN-“Go” and iSPN-“No-Go” neurons showopposite responses—excitation

and inhibition—to reward/reinforcement outcomes, perhaps re�ecting

DA-mediated policy updates45,131,132.

2. Observe the critic pathway of the striosome in action:

• sSPN critic neurons encode positive state value—the more likely it is

an upcoming outcome will be a reward, the more active they are12,148.

• sSPN critic activity is not action speci�c, as it re�ects state—not action—

value.

• State value representation is relatively persistent throughout the trial

(perhaps driven by prefrontal value signals123), as TD errors are com-

puted through the interaction of sSPN projections12 (as opposed to

within the compartment29); however, activity may ramp up as the re-

ward gets closer (due to the discounting of distant rewards6).

3.3 Results

— Fig. 3.3 to 3.6 adapted from Article I —

Continuous Ensembles Encode The Entire Trial

SPNs of all three pathways activated in continuous sequences spanning

the entire trial (Fig. 3.3 A). Could the moment-to-moment neuronal activity

correspond to the ongoing behavior of the mouse, or even the abstract

state of the trial? A momentary snapshot of the activity of any pathway

indeed su�ced to determine at what point of, or where in the trial, a task-

engaged mouse was. In practical terms, we were able to identify the phase

of the trial, and even to predict a mouse’s progress through the given phase,

from phase average activity patterns (i.e. averages of consecutive imaging

frames, segmented by phase) and instantaneous activity (i.e. single frames),

respectively, using cross-validated SVM decoders (Fig. 3.3 C-D, Art. I Fig.

3 J, M-N). This worked irrespective of pathway with accuracy well above

chance level. Moreover, decoders trained on neuronal activity from one
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Figure 3.3 | Phase Decoding.
A Average activity of SPNs of all three pathways during win-stay trials, sorted by the activ-
ity peak (or valley). The raster columns are centered on the following trial events: (1), reward
delivery; (2), return to the initiation port; (3), 350ms initiation nosepoke; (4), choice turn; (5),
350ms choice nosepoke. The bar charts above each “event column” indicate the percentage
of neurons whose trial activity peak/valley fell into the pre- or post-event onset time bin of the
column (i.e. peaking left or right of the time 0 dotted line), for each population.
B Illustration explaining the “Figure-8” plots. The three rounded-off boxes represent the three
nosepoke ports. The choice port boxes’ subdivisions represent the 350ms hold phase, and the
reward and no-reward outcome phases. The center port box is split according to the direction
of the upcomingmovement. Themovements between the ports are represented by the arrows.
C The phase decoding accuracy for each of the 12 phases we distinguished.
D Sub-phase coding in an example session (Oprm1+ mouse). The raster shows the
average activity of the recorded neurons during right-to-center turns. The activity was
stretched/compressed to uniform length and peak-sorted. The figure-8 plots depict the av-
erage activity of three individual neurons.
E The pie charts indicate the fraction of neurons significantly positively-tuned to each phase
by pathway. Only themost significant tuning determined the grouping. Color coded as indicated
by the “figure-8 key”. The bar charts show the percentage of neurons significantly positively-
tuned to various counts of phases, by pathway.
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session proved capable of labeling phases in another session of the same

animal, recorded up to 14 days later (Art. I Fig. 3 O-Q). Although the accuracy

of the phase predictions dropped markedly when decoding across days,

it remained above chance for data from all three pathways. Taking into

account a degree of mismatching when aligning neurons across sessions,

this indicates that the SPN activity patterns are at least reasonably stable

over time. These �ndings suggest that the temporally continuous, sequential

activity patterns observed in all three SPN populations reliably re�ect motor

behavior, or indeed cognitive processes, relating to the trial state.

The fraction of SPNs statistically signi�cantlymodulated during (i.e. “tuned

to”) each trial phase type, and the strengths of these modulations, did not

di�er markedly between pathways. That is, across pathways, signi�cant

phase tunings were similarly distributed over neurons (Fig. 3.3 E), and the

average responses of the tuned populations were comparable in magnitude

(Art. I Fig. 3 F). Moreover, the underlying distributions of tuning strengths—

assessed using a continuous, standardized tuning score—proved unimodal

(i.e. single-peaked) for all trial phases and pathways (e.g. Art. I Fig. 3 D). SPNs

may therefore not be segregated into precisely-delineated, distinctly phase-

tuned assemblies. This possibility meshedwell with two further observations:

(1) neurons of all pathways were highly heterogeneously-tuned to di�erent

counts and combinations of phases in a way that eluded functional clustering

(Art. 1 Fig. S5); (2) although neurons in close spatial proximity tended to be

more correlated than distant neurons, they did not form spatially-compact

clusters of uniform tuning (Art. I Fig. 3 H-I & Fig. S7 E). Overall, the tuning

scores for each phase appeared to be on a continuum shared across all SPNs,

consistent with a stochastic process being the underlying organizational

principle across pathways.

To summarize, the activity of all three SPN pathways covaried with trial

phase in a qualitatively similar fashion, allowing us to decode the entire trial

sequence. The underlying phase tunings were distributed in a graded, rather

than discrete fashion, in all three SPN populations. Together, these �ndings

indicate that the SPNs of all pathways are embedded in distributed, contin-

uous, and overlapping ensembles, rather than in functionally or spatially-

segregated clusters. Whether the tunings re�ected processing of motor or

cognitive variables, or of both is explored in the next sections.
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A Value Correlate And Trial Phase Are Encoded In Conjunction

We noted that the activity of many neurons in variable subsets of phases

depended on the subjective value of the trial, as roughly inferred from the

previous trial’s outcome and the animal’s decision to “stay” or “switch” on the

next trial. An example (Art. I Fig. 5 O-Q): one sSPN activated strongly during

the contraversive return turn, in particular when the preceding ipsiversive

choice had yielded a reward and was to be repeated on the current trial

(i.e. win-stay trial); it activated much less when the choice had not resulted

in a reward, yet was to remain the preferred option (lose-stay trial); and it

activated barely at all on trials in which the unrewarded choice was to be

abandoned (lose-switch). In Fig. 3.4 A, another example sSPN, recorded in

the same session as the �rst, shows the opposite activity pattern in response

to win-stay, lose-stay, and lose-switch trials.

Win-stay, lose-stay, and lose-switch trials may be loosely classi�ed as

high-value, medium-value, and low-value trials. Consequently, the described

example neurons’ activities corresponded, at least approximately, to trial

value. We identi�ed many similar “value-positive” and “value-negative” neu-

rons, in all three SPN pathways, by computing a score designed to measure

phase-speci�c, di�erential activity during high-value win-stay versus low-

value lose-switch trials. Preference for win-stay or lose-switch trials was

indicated by a positive or negative “selectivity score”, respectively (Fig. 3.4 C).

After identifying signi�cantly selective neurons, we ascertained that these

neurons also correlated with a more precise, continuous value estimate than

“trial type” (i.e. win-stay, etc.), and in the manner expected: win-stay selective

neurons correlated positively (Fig. 3.4 D), and lose-switch neurons negatively

(Art. I Fig. 5 L-N) with logistic regression-based “action value” �ts (as used by

Tai et al.121).

The various phase-speci�c selectivities were in evidence in all pathways

in comparable proportions (Fig. 3.4 C), as the phase tunings had been. The

distributions of the selectivity scores were unimodal, like those of the tuning

scores had been, and in density plots of the distributions, the curves of all

three pathways overlapped closely (e.g. Fig. 3.4 C, Art. I Fig. S8 A). Thus, no

pathway showed a sizable, distinctive bias for win-stay or lose-switch trials

in any phase, as such a bias would have been re�ected in pathway-unique

shift of the corresponding selectivity distribution (e.g. a shift towards positive

scores for a win-stay bias). In fact, the (overlapping) selectivity distributions
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Figure 3.4 | Conjunctive phase-and-value signals in the DMS.
A Activity of an Oprm1+ example neuron in win-stay, lose-stay, and lose-switch trials. During
right-to-center turns, the neuron’s activity is negatively-correlated with the “action value”.
B Left: Schematic top view of the operant box with lines depicting the mouse’s right-to-center
turn trajectories in win-stay, lose-stay, and lose-switch trials; same session as in A. Colored
lines show the location of the spine of the mouse during 1/10th of the turn (single trial). Black
lines depict the average “spine trajectory” in 10 steps. Right: Pairwise distances of single-trial
trajectories (top) and turn durations (bottom) for turns shown left.
C Left, top: Selectivity scores for the right-to-center turn, by pathway. Positive and negative
scores indicate preferential activation during win-stay and lose-switch trials, respectively. The
curves overlap closely, indicating no distinct pathway biases. Moreover, the curves are centered
on 0 and symmetrical, i.e. SPNs as a population show no clear win-stay/lose-switch bias. Right:
The fraction of neurons signficiantly-selective during each of the trial phases, by pathway. The
most significant selectivity determined the grouping. Color and shading: figure-8 key, left.
D Left: Raster plots of the average activity of significantly win-stay selective neurons during
the right-to-center turn in lose-switch, lose-stay, andwin-stay trials, by pathway. The turn activity
was stretched/compressed to uniform length prior to averaging. Right, top: The average turn
activity of the neurons plotted against action value, by pathway. Right, bottom: Per-session
average correlation of the selective neurons’ activity X action value, plotted against the per-
session average correlation of the neurons’ activity X turn duration. The radius of each circle
represents the number of selective neurons in that session. Pathways color coded as in C.
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Figure 3.5 | Coding-direction analysis.
The trial type coding direction (CD) is the one-dimensional vector in the n-dimensional neuronal
activity space that best separates the population activity trajectories of the different trial types.
We used the win-stay vs lose-switch selectivity scores to approximate the CD vector. Thus, a
projection onto a CD vector is synonymous to a selectivity score-weighted population average.
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appeared approximately normal and centered on zero in all phases, indicating

that win-stay vs lose-switch selectivities were very evenly distributed in the

DMS in general (Art. I Fig. S8 A). In short, neither could we detect pathway-

speci�c win-stay or lose-switch trial type preferences, nor global ones, in

any of the trial phases.

The vast majority of individual neurons signaled trial type only intermit-

tently, in varied counts and combinations of phases, and not throughout

entire trials (Art. I Fig. 5 D). In support of the heterogeneity of the SPNs’ se-

lectivity pro�les, we found that any selectivity-weighted population-average

only re�ected trial type (or value) in the speci�c phase for which the se-

lectivity scores used as weights had been computed; that is, the neurons

weighing into a particular “selective ensemble” only shared their selectivity

for the single phase that de�ned the ensemble, but were inconsistent in their

selectivity for any other phase (Fig. 3.5). Correspondingly, phase-speci�c

SVM decoders, which successfully decoded trial type from neuronal activity

in the phase they were trained on, failed to perform when applied to any

other phase (Art. I Fig. S9 B).

Altogether, our analysis of the functional organization of SPNs in terms of

trial type or value-coding reinforces the conclusion drawn from the preceding

analysis of phase-coding: the SPNs captured in our recordings appear to exist

in continuous and overlapping ensembles spanning the pathways, rather

than in highly pathway-speci�c and functionally-discrete subpopulations.

Interestingly, these cross-pathway ensembles seemed to encode value

correlates dynamically and in conjunction with the current phase or ongoing

action, rather than statically throughout the trial.

SPN Activity Is Not Only Sensorimotor-Related

There is an obvious potential caveat to the above analysis of trial type/value-

coding: animals’ movement kinematics widely depend on motivation, which

is bound to covarywith trial value. Therefore, our presumedphase-speci�cally

value-correlated populations may in actuality signal sensorimotor-related

information. To assuage this concern, we showed that the selective neurons

were, on average, more correlated with value than action duration (and thus

movement velocity), and further, that neuronal activity covaried with value

even in cases in which the trajectory and the kinematics of the mouse’s

body appeared not to (Fig. 3.4 A-B, D). Consistently, phase-speci�c trial type
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Figure 3.6 | Contra- and ipsiversive turn representation changes with task context.
A Turning speed (average per turn) in the open field and the reversal task (2-choice).
B The average activity of neurons tuned to open-field left turns (i.e. contraversive turns)—
in the open field and the reversal task, by pathway. The arrows in the open field schematic
represent turns, as they do in the figure-8 schematic of the reversal task.
C Top: Percentage of neurons tuned to contraversive/left and ipsiversive/right turns in the
open field and the reversal task (2-choice). Bottom: The cross-task overlap in left and right turn
tuning is chance level, i.e. only as many neurons are tuned to the same turn in both tasks as
would be expected at random.

decoders, trained on SPN activity from any of the pathways, di�erentiated

win-stay and lose-switch trials with high accuracy, whereas decoders trained

on action duration performed no better than negative control decoders—at

chance level (Art. I Fig. 6 F). On the basis of these results, we argued that

we have indeed uncovered conjunctive phase-and-value signals in the ac-

tivity of the SPN pathways, instead of having merely misinterpreted “plain”

sensorimotor signals.

SPN Activity is Shaped by the Task Context

If the conjunctive phase-and-value signals do in fact re�ect that policy or

action value-related information is being processed—as we have argued—

then the neuronal activity in the reversal task should be somewhat task

or context-speci�c. Activity recorded in a context that does not involve

reversals, outcome history-based decision-making, and rewards should be

distinct from what we captured in the reversal task. To con�rm such context-

sensitivity in our data, we compared the activity of the same SPNs in the

reversal task and the open �eld.
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During the spontaneous, unguided and unreinforced exploration of the

open �eld, neurons in all pathways, including the striosome, were positively

modulated by movement in general, and by contraversive (i.e. left) turns in

particular (Fig. 3.6 B, Art. I Fig. D-E, J-K). Approximately half of the neurons

in each pathway were signi�cantly positively tuned to contraversive open

�eld turns. That is roughly the same fraction as were tuned to at least one

of the contraversive turns in the reversal task (Fig. 3.6 C, top). This being

the case, one might imagine that the neurons simply conserved a stable

tuning between the two tasks, or contexts. However, the probability of a

neuron being consistently-tuned across both contexts proved to be at chance

level, in all three pathways (Fig. 3.6 C, bottom). In other words, the tunings

registered in each context appeared to be independent, and thus context-

speci�c.

In a more detailed follow-up analysis, in which we scored the kinematic

similarity of individual actions (i.e. in terms of velocity, angular velocity, and

body elongation), we came to the same conclusion. That is, we observed

that within the same task, kinematic and neuronal similarity were associated:

actions more similar in terms of their kinematics were also more similar

in terms of the neuronal activity they evoked. In contrast, kinematic and

neuronal activity were unrelated when comparing actions between tasks,

attesting to the import of the context (Art. I Fig. 4 Q).

3.4 Conclusions

The similarity of the phase tunings and selectivity scores across pathways,

and the trial-tiling sequential activity patterns stand in stark contrast with

naive predictions of how the hypothesized divergent roles the three SPN

types in decision-making may be re�ected in neuronal activity (Fig. 3.2). Two

key observations: �rstly, the matrix actor pathways did not evidence oppos-

ing selectivities for contraversive high-value/win-stay choices (i.e. dSPNs >

iSPNs). This is incongruous with Tai et al.’s121 hypothesis that higher dSPN ac-

tivity equates with a higher relative value of the contralateral choice, whereas

higher iSPN activity equates with a lower relative value of the contralateral

choice (Fig. 3.1). Secondly, the striosomal critic neurons likewise failed to

display the predicted activity patterns: if they had encoded positive state

value throughout the trial, we should have observed relatively persistent and
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choice direction-independent striosomal selectivity for high-value/win-stay

trials.

As far as we could tell, the DMS SPN activity was continuous in space

and time, and even across pathways. That meant that neurons did not signi�-

cantly cluster by tuning, pathway-identity, or location in the imaged tissue.

Accordingly, the tuning pro�les of neurons of all SPN types were suitably

heterogeneous, with neurons being tuned to—or trial type selective in— di-

verse combinations of phases. Add to that the unimodal, and in most cases

approximately normal distributions of the tuning and selectivity scores, and

it seems likely that the SPNs’ phase tuning and selectivity emerged from a

signi�cantly stochastic process that created rich, distributed, continuous and

overlapping representations of task-relevant information. The nature of the

striatal task representation we observed is hence vastly di�erent from the

temporally and spatially discrete one suggested by models emphasizing an

organization of striatal neurons into competing action channels.



Chapter 4

Articles II & III: The GPi in Action

In Article II, we investigated the LHb-projecting GPi population, questioning

the hypothesis that it serves as a prediction error-coding output of a BG critic

circuit. Using �ber photometry, we recorded the population activity of the

LHb-projecting “limbic” GPi (Sst+) in mice performing our maze or nosepoke-

based reversal tasks, and compared it with the activity of the thalamus-

projecting “motor” GPi (Pv+), i.e. the theoretical actor output. Bulk activity in

the GPi-LHb pathway did not appear to encode prediction error-based choice

feedback. Despite this, we found that silencing the pathway by selectively

expressing TeTxLC in GPi-LHb neurons induced reversal-speci�c de�cits

in mice performing the maze task. Finding intriguing activity di�erences

between the pathways asmice approached the decision point, we suggested

that the GPi-LHb population may in�uence action selection through other

means than prediction error signaling.

In Article III, we contrasted the e�ects of optogenetically activating the

GPi inputs to the LHb with the e�ects of activating inputs arising from the

GPi-adjacent lateral hypothalamus (LHA). These two LHb input populations

are distinct, but hard to distinguish. Stimulating the GPi-LHb pathway in the

real-time place avoidance paradigm or during the reinforcement phase of

the nosepoke-based reversal task proved ine�ective—in stark contrast to

what we observed when targeting the LHA. In a �nal step, we showed that

the LHb-projecting LHA activated in prediction error-like fashion in response

to, and in anticipation of, aversive foot shocks.

46
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4.1 Background

GABA/glutamate Co-release and Population Marker Genes in the GPi

Hong and Hikosaka74 speculated that the GPi-LHb projection—ostensibly

the source of the LHb prediction error signal—was likely excitatory, releas-

ing either acetylcholine or glutamate. A 2012 publication by Shabel and

collaborators94 proved the latter guess correct; GPi input to the LHb is indeed

glutamatergic. Perplexingly, prior work on the GPi-LHb connection, going

back to the 1970s and ’80s, had indicated that GPi-LHb neurons are GABAer-

gic and therefore inhibitory150,151. There was also evidence that the neurons

expressed the neuromodulatory peptide somatostatin (Sst)90, which—like

GABA—generally suppresses the activity of its recipient neurons152. Notably,

Sst was found absent in the thalamus-projecting GPi population, which in-

stead expressed the calcium-binding protein parvalbumin (Pv) selectively89.

In a seminal 2014 publication, Shabel et al.153 followed-up on their previous

publication to resolve the “glutamatergic or GABAergic” puzzle. The team

showed that GPi input to LHb is in fact glutamatergic and GABAergic: GPi ter-

minals co-transmitted both neurotransmitters in the LHb, albeit to apparently

net-excitatory e�ect.

Recent studies77,88, including our own work3, have con�rmed the highly

selective expression of Sst and Pv in the GPi-LHb and GPi-thalamus projec-

tion pathways, further emphasizing the “parallel” nature of these outputs.

Taking advantage of modern RNA sequencing and molecular pro�ling tech-

niques, these studies also showed that Sst-positive (Sst+) neurons co-express

glutamatergic (e.g. Vglut2) and GABAergic (e.g. Vgat) markers88, whereas

the vast majority of Pv+ neurons only contain transcripts indicative of GABA

transmission88. This is robust evidence that LHb-targeting Sst+ neurons

co-transmit GABA and glutamate, as opposed to thalamus-targeting Pv+

neurons, which only release GABA. Moreover, Shabel et al.’s153 functional

demonstration of mixed GABA and glutamate transients in the LHb in ex vivo

electrophysiological recordings replicated when exclusively Sst+, rather than

all glutamatergic (i.e. Vglut2+) GPi neurons were genetically targeted3,88,154.

Remarkably, recent evidence suggests that GABA and glutamate are not

only released from the same synaptic terminals, but that they are even co-

packaged into the same vesicles154.

It should be noted that Wallace et al.88 identi�ed an exception to the “Sst+
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Figure 4.1 | GPi-LHb activity during outcome evaluation biases subsequent choice.
Left: Mice received bilateral optogenetic stimulation of the glutamatergic (Vglut2+) GPi-LHb
population during the reinforcement phase of the probabilistic reversal task.
Right: Activating the pathway while mice nosepoked the left port lowered the probability of
them returning on the next trial (red line). The same manipulation increased the likelihood of a
left choice if delivered during the right-paw side nosepoke (black line).
Reprinted from Stephenson-Jones et al.77, ©2016, with permission from Springer Nature.

equals LHb-projecting, Pv+ equals thalamus-projecting” rule. They found that

a small fraction (<5% of Pv+ neurons did project to the LHb, and—critically–

that this population was exclusively glutamatergic, both in its molecular

marker pro�le, as well as in terms of the responses evoked in the LHb in ex

vivo slice preparations.

Behavioral E�ects of GPi-LHb Activity

In their 2012 study, Shabel et al.94 reported that activating the terminals of

glutamatergic (Vglut2+) GPi neurons in the LHb was highly aversive: rats

subjected to an optogenetic real-time place avoidance test shunned the

stimulated half of the test environment. A 2016 study by Marcus Stephenson-

Jones and colleagues77 replicated this aversive e�ect in mice, then went on

to show that the inhibition of the projection induced the opposite behavioral

e�ect, i.e. place preference, and more. Most strikingly, Stephenson-Jones et

al. presented evidence that optogenetic excitation, as well as inhibition, of

the Vglut2+ GPi-LHb pathway a�ected outcome evaluation and subsequent

decision-making in the nosepoke-based probabilistic reversal task.

Stephenson-Jones at al. used the same task design and logistic regression

analysis as employed by Tai et al.121 in their work on action selection in the

striatum (see previous chapter). Importantly, here the investigators opted to

stimulate bilaterally and time-locked to the presentation of the trial outcome

https://doi.org/10.1038/nature19845


AIMS AND EXPECTATIONS 49

(reward or no-reward): 500ms-long pulses of light stimulationwere triggered

randomly upon choice port entry on 10% of the trials (Fig. 4.1, left).

Stephenson-Jones et al.77 reported that excitation of the Vglut2+ GPi-LHb

projection during the reinforcement phase of the task lowered the probability

of mice repeating their port choice on the next trial considerably (Fig. 4.1,

right). Inhibition of the pathway accomplished the opposite, enticing mice

to return to the port subsequently. This data indicated—the study authors

reasoned—that the induced increases and decreases in GPi-LHb activity

translated into increases and decreases in the value of the stimulated ac-

tion. This interpretation is in line with the notion that the GPi-LHb population

drives prediction error-based reinforcement learning (be it of “action value”

estimates or of “policy values”). Stephenson-Jones et al. supplied further evi-

dence of this by showing prediction error-like responses in putative GPi-LHb

neurons (all neurons that responded like opto-tagged neurons) to primary

and secondary reinforcers in a classical conditioning paradigm involving

tone-cued water rewards and aversive airpu�s. As expected, the recorded

neurons were excited by airpu�s and airpu� predicting-cues, and inhibited

by water and water-predicting cues.

4.2 Aims and Expectations

Our principal aim in the studies reported here was to reproduce and to ex-

tend the �ndings reported by Stephenson-Jones and colleagues76 whilst

exclusively targeting Sst+, rather than all Vglut2+ LHb-projecting neurons. We

deemed this important, because theGPi-adjacent LHA is known to send ama-

jor and largely glutamatergic (Vglut2+) projection to the LHb79,155. Moreover,

in rodents, the GPi-LHb and LHA-LHb projections are notoriously di�cult

to separate anatomically—e.g. prompting Parent, Gravel, and Boucher156

to declare that “there was no distinct boundary” between the populations

in 1981. Most important, however, is that many studies had strongly im-

plicated the LHA70,157–161, and even the LHA-LHb pathway162 in aversion,

reward-processing and reinforcement. In particular, our aims were therefore

the following:

• Record and contrast the activity of the Sst+ (i.e. GPi-LHb) and the Pv+

(i.e. GPi-thalamus) GPi output populations during spontaneous loco-
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motion to rule out movement-related activity as a confound when

interpreting the activity of Sst+ neurons.

• In the nosepoke-based reversal task, con�rm that Sst+ GPi neurons

signal prediction errors as mice �exibly adapt to covert and unpre-

dictable but—due to abundant task experience—somewhat expected

serial reversals.

• In the maze-based reversal task, con�rm that Sst+ GPi neurons signal

prediction errors as mice learn to adapt to the very �rst action-outcome

contingency reversal they experience.

• Replicate the e�ects of GPi-LHb pathway activation in the real-time

place avoidance and nosepoke-based probabilistic reversal tasks, en-

suring that only Sst+ projection neurons are targeted.

• Compare the e�ects of GPi-LHb (Sst+) activation with those of LHA-LHb

(Vglut2+) activation.

4.3 Results

— Fig. 4.2 to 4.4 adapted from Article II; Fig. 4.5 & 4.6 adapted from Article III —

GPi-Targeting Experiments

GPi Activity in Both Pathways Is Correlated with Movement

In the open �eld, the population-level activity of Sst+ GPi neurons roughly

re�ected the kinematics of the animals’ movements, as did the activity of

Pv+ GPi neurons. The activity of both GPi populations grew approximately

logarithmically with movement velocity (cm/s), but di�ered in terms of the

increases observed in relation to angular velocity (°/s): while the Pv+ neurons

had amarked preference for contraversive over ipsiversive turning (relative to

the recording implant), the Sst+ population had no directional preference, and

was only weaklymodulated by turns in general (Art. II Fig. 5 a-b). Hence gross

locomotion, and especially transitions from relative immobility to movement,

appeared to positively impact overall GPi activity irrespective of the pathway,

whilst contraversive turning selectively enhanced the activity of the Pv+

population.
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Figure 4.2 | No prediction error evident in the population activity of Sst+ GPi-LHb neurons.
A Left: Model-estimated reward prediction errors for reward and no-reward trials in the prob-
abilistic reversal task depend on the outcome of the previous trial; e.g. a no-reward outcome
is expected to elicit a larger negative prediction error if the previous trial was rewarded than
if it was unrewarded. Prediction error estimates are derived from trial-to-trial changes in the
action value fits. Right: Average population activity traces in response to no-reward and reward
outcomes at the contralateral choice port, split based on the outcome of the previous trial.
Color-coding follows the box plots on the left. Gray shading indicates the time window used
to compute the means on the right of the traces. Triangles and dashed lines mark the median
port exit times.
B For both Sst+ and Pv+ GPi populations, the average signal drop recorded following reward
delivery and while animals occupy the reward port is more strongly associated with the time
the mice spent nosepoking than with the model-estimated reward prediction error. The filled
circles indicate the correlation coefficients for individual recording sessions, the open circles
the group average.

No Prediction Error Signals in Response to Reward-Location Reversals

In the nosepoke-based probabilistic reversal task, there was no “reward-

negative” prediction error-like modulation evident in the population activity

of either the Sst+ or the Pv+ GPi neurons. Although the Sst+ neurons’ activity

began to fall upon entry into the rewarded nosepoke port, and kept falling

for the duration of the reward consumption, it did so independently of the

magnitude of the estimated prediction error. That is, the reward-phase Sst+

activity decreased the sameway, whether the obtained reward was rendered

more expected by a reward, or more unexpected by a non-reward outcome

on the previous trial (Fig. 4.2 A). Moreover, the Pv+ GPi’s activity dropped

similarly during reward consumption (Art. II Fig. S7 f), and the average sig-

nal decreases in both pathways were more robustly associated with the

amount of time spent consuming the rewards than with the prediction errors

they evoked (Fig. 4.2 B). Taking into account that both GPi populations are

positively correlated with movement, we surmised that the decreases are

a consequence of the mice slowing down in order to consume the reward,

rather than an evaluative signal. In line with this, the GPi activity in either path-
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way decreased much less, or not at all, after unrewarded port entries, which

did not feature a “reward consumption-length” interruption of movement.

Critically, the two populations’ “omission responses” failed to distinguish high

and low prediction error trials, just as their “reward responses” had (Fig. 4.2 A).

Therefore, there was no indication of prediction error coding by GPi neurons

in the probabilistic reversal task.

Examination of the outcome-phase population responses after the swap

of the reward location in the maze-based reversal task similarly failed to

reveal the expected prediction error-like evaluation signals. Indicative of

their signi�cant reward expectations, the mice approached the unrewarded

spout dozens of times, and yet we did not capture strong increases in the

activity of the Sst+ GPi population when the animals found their expectations

unmet. In fact, on average, the Sst+ GPi activity decreased in response to

the post-reversal reward omissions (Art. II Fig. 4 b-c), and appeared to do so

more markedly than it did in response to the initial rewards obtained at the

new location (Art. II Fig. 4 e-f).

Analysis of the population activity in both behavioral tasks—the nosepoke-

based and the maze-based reversal tasks—therefore contradicts the hypoth-

esis that the Sst+ LHb-projecting GPi population’s net output consists in a

reward-negative prediction error signal.

GPi-LHb Excitation is Not Choice-Devaluating or Aversive

In another set of experiments, we manipulated the activity of the LHb-

projecting GPi population rather than recording it. In the nosepoke-based

reversal task, bilateral optogenetic activation of the GPi-LHb pathway during

the outcome evaluation phase did not a�ect the mice’s subsequent choices,

and thus failed to interfere with the evaluation process (Fig. 4.5 D). Opto-

genetic excitation of the pathway similarly failed to induce avoidance of

the stimulated compartment in the real-time place avoidance test; i.e. mice

occupied the half of the test environment in which they received optogenetic

stimulation about as much as the half in which they did not (Fig. 4.5 E). Thus,

the activation of the GPi-LHb pathway did not depreciate the value of the

stimulated compartment, nor was it perceived as aversive in and of itself.

These manipulation experiments bolster the conclusion that the Sst+ LHb-

projecting GPi neurons do not transmit intrinsically aversive, reward-negative

evaluation signals—at least not uniformly on the population level.
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Figure 4.3 | Chronic inactivation of Sst+ GPi-LHb neurons impairs reversal performance.
A The maze-based reversal task. For 14 days, mice were trained to run down the center corri-
dor, turn right, and approach the spout at the corridor’s end to obtain a reward. On the 15th day,
the reward location “reversed” from the right to the left-paw side maze corridor.
B The more Sst+ GPi neurons expressed TeTxLC, the worse the average performance on the
five days following the reversal. Pre-reversal performance was unaffected by the treatment.
C TeTxLC expression did not predict the average number of trials amouse performed per ses-
sion pre- or post-reversal.

Chronic Inactivation of GPi-LHb Neurons Impairs Reversal Performance

Interestingly, TeTxLC-mediated chronic inactivation of the Sst+ LHb-projecting

GPi population selectively impaired the ability of mice to adapt to the re-

ward location reversal in the maze-based reversal task. The number of Sst+

GPi neurons found to express TeTxLC, and hence the extent of the inactiva-

tion, strongly predicted the overall error rate in the six days following the

reversal: whereas mice with only a few or no TeTxLC-transfected cells erro-

neously returned to the formerly rewarded arm in around 30% of the trials

they performed, the mouse with the most widespread TeTxLC expression

went wrong in about 90% of its trials (Fig. 4.3 B). Importantly, the number of

TeTxLC-positive cells did not predict the choice accuracy prior to the reversal,

nor the average number of trials completed per session pre- or post-reversal

(Fig. 4.3 C). Therefore, it is unlikely that TeTxLC expression a�ected learn-

ing generally, nor is it probable that it blunted motivation or locomotion, or

reduced task-engagement or learning opportunities.

GPi-LHb Neurons Are Distinctly Modulated During the Choice Phase

If not via prediction error-driven reinforcement learning, motivation or lo-

comotion, how might the Sst+ GPi population facilitate accurate behavior

post-reversal in the maze task? Is it possible that the chronic inactivation
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of Sst+ GPi neurons impaired action selection rather than action evaluation?

In other words, are the TeTxLC-expressing mice able to learn from their

mistakes, but unable to �exibly deviate from the previously (overtrained)

behavioral pattern?

The evolution of the choice turn-related population activity of intact Sst+

GPi neurons over the course of the maze reversal experiment is suggestive

of this hypothesis. In the �rst couple of training days, the activity at the

onset of the choice turn was usually above the session mean activity—as

expected, considering that the animal is running into the turn, andmovement

is positively correlated with GPi activation. However, by training day seven,

the Sst+ activity recorded as an animal entered the turn was typically below

the session mean early-on in the session (i.e. suppressed), only to recover

to its former above-mean level (i.e. excited) as the session progressed (Fig

4.4 A). This pattern—“early-session suppression to late-session excitation”—is

unexpected, especially considering that the reward-thirsty animals moved

quickest early on, and slowed towards the later parts of the session, when

their thirst was quenched. The within-session development of the Sst+ GPi

activity at turn onset is thus roughly anti-correlatedwith movement velocity—

unlike what we observed in the open �eld (Fig. 4.4 C).

Remarkably the “early-session suppression to late-session excitation”

activity pattern disappeared after the reversal, just as the mice adopted

the alternative turn response, which now yielded rewards. That is, after the

successful reversal, the activity at the choice turn onset was yet again above

themean for the entire session—as it was in the �rst few days of training—and

so it remained for all subsequent sessions recorded (Fig 4.4 A-B).

Importantly, the Sst+ activity modulations were (1) speci�c to the choice

turn phase and (2) the Sst+ population: (1), that themodulations did not re�ect

general changes in “baseline activity” (i.e. a�ecting the entire trial) was evident

from turn onset-aligned, average activity traces of the maze runs: depending

on the trial type and the session’s progress, the averages fell or ramped up

toward the turn, with their highest peak or lowest valley shortly after the

turn onset (Fig. 4.4 C). (2), the modulations were speci�c to Sst+ GPi neurons,

as Pv+ neurons did not show any modulation in the choice phase, neither

across nor within-sessions (Fig. 4.4 B). Curiously, the Pv+ neurons’ activity

even appeared insensitive to turn direction: the choice turn onset-aligned,

average activity traces of contra- and ipsiversive choice maze runs, though
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Figure 4.4 | The Sst+ GPi-LHb population is distinctly modulated during the choice phase.
A The evolution of the Sst+ GPi’s population activity recorded at the onset of the choice turn
(see gray box). Each “session subplot” (days 1–20) presents the turn-onset activity plotted
against the fraction of trials completed of the session total. The dots represent single con-
traversive (blue) and ipsiversive (magenta) trials, pooled over animals. The black lines are the
mean of per-animal regression fits.
B Mean coefficients for regressions fitted—per animal and day—to the turn-onset activity data
(as shown for Sst+ mice in A), presented by pathway. The mean intercept (black line) approxi-
mates the turn-onset activity at the start of a session; the mean slope (red) approximates the
change in turn-onset activity between the start and end of a session.
C Left: Average velocity (cm/s) and angular velocity (°/s) of animals entering the contraver-
sive choice turn (time 0), pre-reversal. Trials were averaged by session quartile; i.e. Q1 to Q4 are
the 1st to 4th 1/4 of trials of the session total (see color coding of the raster plot). Right: Raster
plots of the population activity recorded during individual maze runs, aligned to the onset of the
choice turn (time 0). In each raster, trials were grouped by session quartile, and sorted from
earliest to latest. Per-quartile average traces are shown above the rasters. Only correct maze
runs were included in each raster (i.e. pre-reversal = contraversive, post-reversal = ipsiversive).
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elevated above the session mean, proved similarly �at throughout the run, in

stark contrast to the contra-preferring responses captured in the open �eld

(Fig. 4.4 C).

One may speculate widely as to the meaning of these modulations; we

observe, that the GPi activity is suppressed when the mice behave at their

most habitual (after a week of training), and high when the behavior is more

�exible and exploratory (early in training and during/after reversal), or even

when the mice are disengaged from the task (towards the end of a session).

Perhaps the GPi-LHb pathway’s function in reversal tasks is indeed to enable

the selection of alternative actions or behavioral strategies over the most

prepotent responses.

LHA-Targeting Experiments

LHb-projecting and mainly glutamatergic LHA neurons border the GABA

and glutamate co-transmitting Sst+ GPi155,162. Without visualizing the Sst

expression, or the overlap of GABAergic and glutamatergic markers, the

populations are di�cult to segregate anatomically (Fig. 4.5 A-C)156. Critically,

excitatory transmission at LHA-LHb axon terminals has been implicated

in acute162 and learned behavioral avoidance163. To investigate whether

the evaluative and aversive functions previously attributed to the GPi-LHb

projection may instead arise from the neighboring LHA-LHb projection, we

conducted optogenetic and calcium imaging experiments targeting the

latter pathway. These experiments �nally yielded the results we had initially

hypothesized to obtain in our GPi-LHb studies.

LHA-LHb Excitation is Choice-Devaluating and Aversive

In the nosepoke-based reversal task, optogenetic activation of the LHA-LHb

projection signi�cantly decreased the likelihood of the mice repeating their

choice on the next trial, indicating that the choice had been devalued by

the manipulation (Fig. 4.5 D). Moreover, we found LHA-LHb stimulation to

be extremely potent and aversive in the real-time place avoidance assay:

the experimental mice spent only a small fraction of time in the stimulated

chamber, usually exiting the chamber soon after the onset of the stimulation

(Fig. 4.5 E). This matched prior data from the laboratory of Garret Stuber162,

who had reported the same in 2016. Both of these strong and negative-
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Figure 4.5 | LHA-LHb stimulation is devaluating and aversive, GPi-LHb stimulation is not.
A Coronal brain section of a mouse that had a retrograde rabies virus (Rb-EGFP) injected into
the LHb for the purpose of identifying glutamatergic (Vglut2+) inputs to the area.
B Vglut2+ neurons that project to the LHb in the GPi and the LHA.
C Vglut2+ neurons in the GPi also express the GABAergic marker Vgat and Sst (blue). Vglut2+
neurons in the LHA are Vgat- and Sst- (red).
D Left: Activating the LHA-LHb pathway (Vglut2+) while mice nosepoked the left or right
choice port lowered the probability of the mice returning on the next trial. Right: The same
manipulation of the GPi-LHb pathway (Vglut2+/Vgat+) had no such effect.
E In the real-time place avoidance test, mice avoided the chamber paired with Vglut2+ LHA-
LHb axon terminal stimulation. The stimulation of Sst+ GPi-LHb terminals had no effect.
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Figure 4.6 | LHA-LHb neurons show prediction error-like responses.
Left: Z-projected video stills (miniscope recording) show 8 Vglut2+ LHA-LHb projection neu-
rons which we followed across two days of fear conditioning. Right: The raster shows the av-
erage responses of the 8 neurons to the shock-predicting cue (conditioned stimulus, CS) and
the foot shock (unconditioned stimulus, US), on conditioning days 1 and 2. Per-day population
averages of all 8 are traced-out below.

valuede�ects contrastwith the null results observed in the sameexperiments

when targeting the GPi-LHb pathway.

LHA-LHb Neurons Activate in Prediction Error-Like Fashion

Usingminiscopes, we also showed that a subset of LHb-projecting excitatory

LHA neurons signal negative prediction error-like signals in an auditory fear

conditioning paradigm. Over the course of repeated pairings of an auditory

tone cue with a mild electrical foot shock, in which the onset of the tone

consistently precedes that of the shock, these neurons acquired a strong

response to the predictive tone whilst concomitantly losing much of their

sensitivity to the shock (Fig. 4.6). Unlike the Sst+ GPi-LHb population, LHA-

LHb neurons therefore appear to be modulated by outcome expectations in

the manner expected of a negative prediction error-signaling population.

4.4 Conclusions

The data presented here suggests that the LHb-projecting GPi does not drive

the prediction error signals of the LHb—at least not the major Sst+ GABA and

glutamate co-transmitting population. The unexpected delivery or omission

of rewards did not evoke prediction error signals in the population activity
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of Sst+ GPi neurons, neither in the context of the overtrained serial reversal

nosepoke task—in which the expert subjects “expected” the randomized

omissions and reversals to some degree—nor in response to the singular

reversal in the maze task—for which subjects were wholly unprepared. Fur-

thermore, we found outcome-concomitant optogenetic manipulations of

the Sst+ population activity in the probabilistic nosepoke reversal task to

be ine�ective, hence failing to replicate Stephenson-Jones et al.’s77 results

(Fig. 4.1) in our more accurately-targeted experiment (Sst+ only, rather than

all Vglut2+). Optogenetic activation of the Sst+ GPi-LHb pathway also failed

to induce real-time place avoidance, suggesting it was not experienced

as aversive by the mice. However, the same experiments yielded positive

results when we targeted the Vglut2+ LHA-LHb pathway. Neurons of the

latter pathway also encoded a prediction error-like signal in response to the

shock-predicting tone cues and shocks of a fear conditioning paradigm. We

concluded that the Vglut2+ LHA-LHb projection—not the adjacent Vglut2+

and Sst+, GABA and glutamate co-transmitting GPi-LHb projection—gives

rise to the negative reinforcement-related e�ects and activity observed in

the region. We cannot rule out, however, that the minor Pv+, and exclusively

glutamatergic GPi-LHb population Wallace and colleagues88 observed (see

Background section) serves a similar role to that of the Vglut2+ LHA-LHb

projection.

Despite their apparent non-involvement in outcome evaluation, we did

�nd that chronically silencing the Sst+ GPi population impaired the ability of

overtrained mice to consistently shift their e�orts to the alternative choice,

post-reversal in the arrow maze, whereas it did not a�ect the pre-reversal ac-

quisition or performance of the task. When comparing pre- and post-reversal

sessions, we observed di�erential population activity as mice approached

the decision point in the �rst half of a session: in the days prior to the reversal,

the activity of Sst+ GPi neurons in mice persistently and rapidly executing

well-trained contraversive choice runs appeared suppressed. In contrast,

post-reversal, the activity was elevated while the mice prepared and exe-

cuted ipsiversive choice turns. Turn direction alone could explain the disparity

of activity observed pre- versus post-reversal, as there was no such di�er-

ence in Sst+ GPi neuronal activity between ipsiversive and contraversive turns

in the open �eld. These data led us to suspect that the Sst+ GPi-LHb pathway

may be involved in the action selection process, especially if a prepotent re-
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sponse needs to be suppressed (perhaps by mediating between competing

goal-directed and habitual actor circuits).

A signi�cant caveat to the latter speculations must be noted: the use of

unilaterally implanted photometry �bers and a single maze training sched-

ule (�rst contraversive, then ipsiversive) precluded us from fully assessing

whether the maze choice-related Sst+ GPi activity was—unlike in the open

�eld—lateralized, or became so with training. Follow-up experiments are

thus needed to support a role for the Sst+ GPi-LHb population in reversal

execution, rather than evaluation, i.e. a role in the actor, rather than the critic.



Chapter 5

Conclusion and Outlook

In this thesis, I have explored data that captured major, genetically-identi�ed

BG pathways at work at both ends of the BG network—i.e. at the input end,

in the striatum, and the output end, in the GPi. The major aim, alluded to

in the thesis title, was to show a BG critic circuit in action, �rst evaluating

(in DMS, Art. I), and then critiquing (in GPi, Art. II & III) the consequences of

actions selected by a complementary and largely parallel actor circuit. The

hypothetical critic pathway of interest here originates in the dorsal striatal

striosome (Oprm1+), and projects via a distinct GPi population (Sst+) to the

LHb, a region well-known for its error signals and involvement in (negative)

reinforcement. With regards to the ambitious aim of showing this particular

critic “critiquing action”, the data presented here was negative, both in the

DMS and the GPi.

BG-mediated policy-driven action selection—rightfully en vogue since

the discovery of the DA prediction error—is typically conceptualized as the

BG gating between relatively discrete units of behavior, to be found rela-

tively high-up in the behavioral control hierarchy—the chocolate ice cream-

level—and thus proceeding a relatively glacial time scale, if compared to

“lower-level” processes such as the regulation of movement kinematics. This

is not only the simplest and most natural way to think about “actions”, it is

also the level of analysis behavioral neuroscience inherited from behaviorist

theory and conditioning methodology, in which actions are associated with

outcomes, and stimuli with other stimuli, and stimuli with responses, and

so forth. Indeed, the DA prediction error itself is commonly understood to

reinforce associations at this particular level. This conception of actions is

therefore most natural to the behavioral neuroscientist’s mind. Not coinci-
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dentally, it is also most experimentally tractable: discrete actions are easily

observable in well-established behavioral paradigms; discrete decision pro-

cesses are straightforward to analyze and reason about; and—perhaps most

importantly—neuroscience has the tools to record, identify, and manipulate

discrete ensembles, e.g. by means of optogenetics or similar techniques.

That is to say, the full might of the modern circuit neuroscience toolkit can

be brought to bear to “dissect” a system—if what is to be dissected is, conve-

niently, discrete.

In Article I, we reported a just so pitched study of the DMS in decision-

making. Imaging the two matrix pathways, we expected to see discrete SPN

ensembles (“something that clusters”) representing the two available port

choices in the run up to the decision—i.e. the actor in action; imaging the

striosome, we expected state value representations—i.e. the critic in action.

We found the SPN activity to carry on atmuch faster clip than anticipated, and

lacking clear breaks between the events deemed important at the “action-

level”. The signal was much more complex within each pathway, but also

more uniform across them than anticipated. The principal thing we could

tell was: SPNs represent the “where” and “why” of the task in cross-pathway

ensembles that were spatially and temporally continuous more or less at

the spatiotemporal resolution we could technically resolve.

Our article is but one in a list of articles similarly showing just how good

the striatum is at representing the evolving behavioral context mice �nd

themselves in; continuous activity in the striatum keeps track of animals’

movements164,95,98,165, of their location166–171, and of time172–174, moment-by-

moment, if the task requires it. Ironically, what tripped us up when confronted

with the experimental results is precisely what made the BG attractive for

RL-�avored models in the �rst place—their capacity to distill their enormous

convergent input into state representations which could then be mapped

to action-policies and value estimates. It tripped us up chie�y, I would ar-

gue, because our expectations of how states, actions, and values would be

represented in the DMS were o�.

The caveats to a single study like ours are—of course—countless: perhaps,

we did not “hit” any DMS action channels (what are, after all, the chances?).

Or we did not target the right BG loop; the fairly repetitive behavior could

be habitual, and driven by stimulus-response associations localized in the

lateral part of the striatum133. Perhaps the use of a task and analysis strategy
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little suited to reveal di�erences between policy and value representations

obscured di�erences between the striosome andmatrix134. Perhaps we were

led astray by possibly coincidental movement-related activity that can be

picked-up all over the brain175,176. . .

However, in the light of our data, as well as data presented in the studies

cited above, I wish to suggest that—perhaps we are too focused on �nding

discrete or explicit action policy and state value representations, and to neatly

parcel them out to “parallel” BG pathways. Let me explore some of the issues

with the discrete action selection-focused actor-critic model I have outlined

in this thesis.

It seems clear that there is substantial anatomical and likely functional

overlap between the BG pathways that complicate the picture I have drawn

over the past chapters to support the actor-critic BG model. Stephenson-

Jones et al.77 found barely more than half of the input to the LHb-projecting

GPi to arise from the striosome, around 55%, whereas in the study by Wal-

lace and colleagues88, only about 25% of the striatal input neurons to the

GPi-LHb pathway were located in the striosome. The latter was nevertheless

described as a “patch-biased” input, by comparison to a tracing that showed

the striosomal input to a GPi-thalamus pathway being close to zero. Similarly,

Jared Smith and collaborators177 found the percentage of striosomal neurons

among the SNc inputs in the striatum to number below even a quarter. More-

over, while many or most striosomal neurons may project to the SNc, the ma-

jority of them appear to collateralize and to simultaneously project to targets

primarily linked with thematrix pathways, such as the SNr and the GPe56,58,149.

The SNr and GPe themselves project to and inhibit the SNc32,60,178, which has

led to the suggestion that thematrix pathways may drive the computation of

the TD prediction errors within the DAmidbrain179. Some dSPNs—i.e. neurons

of the supposed facilitatory “Go” pathway—project like neighboring iSPN

“No-Go” neurons, and, like the latter, suppress movement180,181. It has also

been reported that selective optogenetic manipulation of either dSPNs or

iSPNs evoked excitation and inhibition in about equal fractions of the respon-

sive SNr BG output units182. Inhibition of the two striatal pathways similarly

failed to induce the expected, opposing e�ects in the SNr183. Clearly, the

much-touted parallel pathways are not quite that parallel.

Another important issue for our DMS striosome-matrix actor-critic model,

with the DMS-innervating SNc providing action selection-relevant update
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signals, arises from the fact that theDA input from the SNc frequently appears

more related to movement than reward processing and prediction error

signaling184,185. Critically, optogenetic stimulation of SNc neurons failed to

confer incentive value onto a neutral, stimulation-paired cue, as would be

expected if SNc signals shaped the value-expectations of a striosome-critic;

that is, rather than serving as a secondary reinforcer in an operant task, the

SNc excitation-paired cue evoked vigorous rotational movements186.

The point is, both the anatomical and functional assumptions of themodel,

at least with regards to discrete action selection, are arguably very strained.

Perhaps greater attention should be paid to the continuous and pathway-

crossing patterns we—and others before us—have observed. Yoo, Hayden,

and Pearson96 formulated it perfectly in a 2021 opinion piece titled “Continu-

ous decisions”:

Traditional ‘box-and-line’ approaches to cognitive neuroscience

presume the existence of discrete cognitive functionswith intuitive

easy-to-name roles. These functions are assumed to be rei�ed

in neuroanatomy. For example, if choice consists of evaluation,

comparison and selection, then these three conceptually discrete

functions ought to correspond to discrete anatomical substrates.

An alternative viewpoint is distributed; it imagines that choice

re�ects an emergent process arising from multiple brain regions

whose functions may not correspond to nameable processes,

and/or that may largely overlap.

In a similar vein, Eberhard Fetz187 wrote in 1992 about the question “Are

movement parameters recognizably coded in the activity of single neu-

rons?”. . .

[T]he search for explicit coding may actually be misleading, and

may divert our understanding of distributed neural mechanisms

that operate without literal representations.

. . . implying that individual motor cortex neurons do not explicitly code

for movement parameters, including force and limb displacement, and that

evidence suggesting it does may in fact arise from conceptually-biased and

selective analysis of the data187. If a major corticostriatal input to the BG
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might not explicitly encode key behavioral variables188,189, then perhaps the

BG itself does not either?

Amajor advantage of a RL system inwhich policy and value are learned by

separate modules—i.e. of the actor-critic system—is that it can learn continu-

ous policies7, which allow the agent to deal with continuous action spaces.

That is, for example, useful if you are faced with the (admittedly obscure)

question “How bitter would you like your chocolate ice cream?” rather than

“Chocolate or Vanilla?”. For the BG, an ability to acquire continuous poli-

cies may also serve to distill complex, dynamical cortical states into equally

dynamical, but presumably somewhat less complex and more contextually-

useful, “BG states”—which the BG’s cortical and subcortical targets may �nd

highly actionable30,100. What is the nature of cortical population-level compu-

tations?, and what is that of their BG “distillate”, as returned through the BG’s

various loops? Investigating these questions, and comparing their answers,

is what I �nd most intriguing today. If we do, there is hope that someday

we might know how a BG actor-critic—if one more distributed than outlined

here—has shaped your ice cream habit.
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