16,374 research outputs found

    "The fridge door is open" : temporal verification of a robotic assistant's behaviours

    Get PDF
    Robotic assistants are being designed to help, or work with, humans in a variety of situations from assistance within domestic situations, through medical care, to industrial settings. Whilst robots have been used in industry for some time they are often limited in terms of their range of movement or range of tasks. A new generation of robotic assistants have more freedom to move, and are able to autonomously make decisions and decide between alternatives. For people to adopt such robots they will have to be shown to be both safe and trustworthy. In this paper we focus on formal verification of a set of rules that have been developed to control the Care-O-bot, a robotic assistant located in a typical domestic environment. In particular, we apply model-checking, an automated and exhaustive algorithmic technique, to check whether formal temporal properties are satisfied on all the possible behaviours of the system. We prove a number of properties relating to robot behaviours, their priority and interruptibility, helping to support both safety and trustworthiness of robot behaviours

    Surfactant mixtures at the oil–water interface

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in JOURNAL OF COLLOID AND INTERFACE SCIENCE, VOL 398, (2013) DOI 10.1016/j.jcis.2013.01.06

    Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals

    Get PDF
    Numerous factors affect the fine-scale social structure of animal groups, but it is unclear how important such factors are in determining how individuals encounter resources. Familiarity affects shoal choice and structure in many social fishes. Here, we show that familiarity between shoal members of sticklebacks (Gasterosteus aculeatus) affects both fine-scale social organization and the discovery of resources. Social network analysis revealed that sticklebacks remained closer to familiar than to unfamiliar individuals within the same shoal. Network-based diffusion analysis revealed that there was a strong untransmitted social effect on patch discovery, with individuals tending to discover a task sooner if a familiar individual from their group had previously done so than if an unfamiliar fish had done so. However, in contrast to the effect of familiarity, the frequency with which individuals had previously associated with one another had no effect upon the likelihood of prey patch discovery. This may have been due to the influence of fish on one another's movements; the effect of familiarity on discovery of an empty ‘control’ patch was as strong as for discovery of an actual prey patch. Our results demonstrate that factors affecting fine-scale social interactions can also influence how individuals encounter and exploit resources.Publisher PDFPeer reviewe

    Formal verification of an autonomous personal robotic assistant

    Get PDF
    Human–robot teams are likely to be used in a variety of situations wherever humans require the assistance of robotic systems. Obvious examples include healthcare and manufacturing, in which people need the assistance of machines to perform key tasks. It is essential for robots working in close proximity to people to be both safe and trustworthy. In this paper we examine formal verification of a high-level planner/scheduler for autonomous personal robotic assistants such as Care-O-bot ™ . We describe how a model of Care-O-bot and its environment was developed using Brahms, a multiagent workflow language. Formal verification was then carried out by translating this to the input language of an existing model checker. Finally we present some formal verification results and describe how these could be complemented by simulation-based testing and realworld end-user validation in order to increase the practical and perceived safety and trustworthiness of robotic assistants

    Simple manipulation of a microwave dressed-state ion qubit

    Get PDF
    Many schemes for implementing quantum information processing require that the atomic states used have a non-zero magnetic moment, however such magnetically sensitive states of an atom are vulnerable to decoherence due to fluctuating magnetic fields. Dressing an atom with an external field is a powerful method of reducing such decoherence [N. Timoney et al., Nature 476, 185], even if the states being dressed are strongly coupled to the environment. We introduce an experimentally simpler method of manipulating such a dressed-state qubit, which allows the implementation of general rotations of the qubit, and demonstrate this method using a trapped ytterbium ion

    Wiener Reconstruction of Large-Scale Structure from Peculiar Velocities

    Full text link
    We present an alternative, Bayesian method for large-scale reconstruction from observed peculiar velocity data. The method stresses a rigorous treatment of the random errors and it allows extrapolation into poorly sampled regions in real space or in k-space. A likelihood analysis is used to determine the fluctuation power spectrum, followed by a Wiener Filter (WF) analysis to obtain the minimum-variance mean fields of velocity and mass density. Constrained Realizations (CR) are then used to sample the statistical scatter about the WF mean field. The WF/CR method is applied as a demonstration to the Mark III data with 1200 km/s, 900 km/s, and 500 km/s resolutions. The main reconstructed structures are consistent with those extracted by the POTENT method. A comparison with the structures in the distribution of IRAS 1.2Jy galaxies yields a general agreement. The reconstructed velocity field is decomposed into its divergent and tidal components relative to a cube of +/-8000 km/s centered on the Local Group. The divergent component is very similar to the velocity field predicted from the distribution of IRAS galaxies. The tidal component is dominated by a bulk flow of 194 +/- 32 km/s towards the general direction of the Shapley concentration, and it also indicates a significant quadrupole.Comment: 28 pages and 8 GIF figures, Latex (aasms4.sty), submitted to ApJ. Postscript version of the figures can be obtained by anonymous ftp from: ftp://alf.huji.ac.il/pub/saleem

    Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium

    Get PDF
    © 2015 Webster et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
    • …
    corecore