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Development of novel multiplex
microsatellite polymerase chain reactions
to enable high-throughput population
genetic studies of Schistosoma haematobium
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Abstract

Background: Human urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across
Africa and is increasingly targeted for control and regional elimination. The development of new high-throughput,
cost-effective molecular tools and approaches are needed to monitor and evaluate the impact of control programs
on the parasite populations. Microsatellite loci are genetic markers that can be used to investigate how parasite
populations change over time and in relation to external influences such as control interventions.

Findings: Here, 18 existing S. haematobium microsatellite loci were optimised to enable simultaneous amplification
across two novel multiplex microsatellite PCR’s, each containing nine loci. Methods were developed for the cost
effective and rapid processing and microsatellite analysis of S. haematobium larval stages stored on Whatman-FTA
cards and proved robust on miracidia and cercariae collected from Zanzibar and Niger.

Conclusion: The development of these novel and robust multiplex microsatellite assays, in combination with an
improved protocol to elute gDNA from Whatman-FTA fixed schistosome larval stages, enables the high-throughput
population genetic analysis of S. haematobium. The molecular resources and protocols described here advance the
way researchers can perform multi locus-based population genetic analyses of S. haematobium as part of the
evaluation and monitoring of schistosomiasis control programmes.

Keywords: Cercariae, High-throughput, Microsatellites, Miracidia, Multiplex, Population genetics, Schistosoma
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Findings
Introduction
Infection with the blood fluke Schistosoma haematobium
causes human urogenital schistosomiasis throughout
Africa, parts of the Middle East, Madagascar and the Indian
Ocean Islands, with an estimated 110 million people
infected [1]. Several efforts are underway to control mor-
bidity and ultimately to eliminate S. haematobium infection
predominantly through the large-scale administration of
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the drug praziquantel (PZQ) [1]. The development of new
high-throughput, low cost, molecular tools and approaches
are now imperative, not only to elucidate the epidemiology
and evolution of schistosomiasis but also to monitor and
evaluate the impact of progressing control programs [2].
Here we present an enhanced method enabling the high-
throughput and cost effective preparation of gDNA from
individual schistosome larval stages facilitating multi-loci
genetic analysis together with two novel S. haematobium
multiplex microsatellite PCRs. Microsatellite loci are highly
variable DNA markers in widespread use within the schis-
tosomiasis research community as they enable population-
level analysis [3]. The principal drawback of microsatellite
markers has been the cost and labour associated with the
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need to genotype multiple loci. Significant cost and
timesaving can be achieved by developing multiplex PCR
systems that amplify multiple microsatellite loci in single
reactions. The methods outlined here facilitate the high-
throughput microsatellite-based population genetic analyses
of S. haematobium.
Microsatellite multiplex design and optimisation
S. haematobium microsatellite loci were available from
[4] and [3]. Loci that were di, tri or tetra-mer repeats,
non-compound, robust and had multiplexing potential
were selected for further optimisation. Eighteen loci were
chosen in total (15 from [3] and three from [4], Table 1).
Initially the functionality and specificity of all the primer
pairs were confirmed by amplifying all the loci in single-
plex 12.5 μl reactions using 10 ng of S. haematobium
reference gDNA obtained from the Schistosomiasis
Collection at the Natural History Museum (SCAN [5])
and the Type-it Microsatellite PCR Kit (Qiagen) according
to the manufacturer’s protocol.
The loci were successfully divided into two multiplex

panels each incorporating nine loci that gave the maximum
size difference between each locus and a maximum of four
Table 1 Details of the 18 selected microsatellite loci and the charac
Sh1-15 are from Travis et al., 2013 and Loci C102, C111 and C131 are
for Pemba Ho = 0.599, He = 0.638. The overall Ho = 0.597, He = 0.623

Panel 1 Marker Forward Primer 5'- 3' Reverse Primer 5'- 3'

Panel 1 C102 TGTCTCTGTGAATGACCGAAT TTAGATGAATAATAATGTTG

Sh1 GCATCCAATTTCGTACAC CCACATTAGGCCAACAAG

Sh14 GTCCTCCTTCCCTCTTTG CACATTCGTCCTAGATATCG

C131 CTTGTCATTTGGGCATTGTG CATGGTGAGGTTCAAACGT

Sh6 GGGATGTATGCAGACTTG TTGTTTGGCTGCAGTAAC

Sh9 GCTGAGCTTGAGATTG CTTCTGTCCCATCGATACC

Sh3 GCTGAGCTTGAGATTG CTTCTGTCCCATCGATACC

C111 CCCTTGTCTTCAATGCGTTA GAACGTCTAACTGGCGATC

Sh7 TCCAAGCACCATTATCAAG ACGGAAACTTGTTGAAATG

Panel 2 Sh2 TTAGTGTGTTTGGCTTCAAC CCTCGAATGAAATCCTGAC

Sh5 TGTGCACAAGAAAGATTAAATG ACGACAATGTTGCAAGTTC

Sh13 GAGCAGCTATTTCGTATCG ACCGTGGACAGTTCATCAG

Sh4 CCCATCGCTGATATTAAAG TCTAGTCGTCTTGGGATCC

Sh10 CGCATGTCATACCTATCTCC GCTTATCAGGCCTATCTCC

Sh12 CGTCTTAGTGAGCCAGATG CTCGTGGACATCATCAG

Sh8 CTAAACTGGCAAGATTTC CAACGTGCCTTTATTTC

Sh11 TTGGTTTAGAAATTACATCACC CCAACAATATTAATGGACA

Sh15 CTTTCAGTAGGATTTGTTG CGACGTCAAGCACTGTAC

Panel = single mulitplex PCR. A = observed number of alleles. Dye = the fluorescent
PET = red). Ho = observed heterozygosity, He = expected heterozygosity
overlapping loci at any size range, together with minimal
variance of the annealing temperature of all the primers
(Tm) (Table 1). Within each panel the forward primer for
each locus was 5' labelled with a fluorescent reporter dye
according to the 5-dye detection system. Overlapping
fragments were assigned a different dye and the maximum
distance was maintained between fragments labelled with
the same dye to enable accurate identification. The multi-
plex microsatellite PCRs for each panel were carried out in
12.5 μl reactions using 10 ng of S. haematobium reference
gDNA and the Type-it Microsatellite PCR Kit (Qiagen)
according to the manufacturer’s protocol. Different Tm

values were tested with the optimal Tm that gave uniform
and specific amplification for all loci in each panel deter-
mined at 54 °C. Singleplex and multiplex amplicons were
visualised on 3 % gel red agarose gels before 2 μl of 1: 50
dilutions were mixed with 0.35 μl of GS500Liz size stand-
ard (Applied Biosystems) before being denatured for 5
mins at 95 °C and injected at a 10 s injection speed into
an Applied Biosystems 3130xl DNA Analyser. Allele
peaks were visualised in Geneious version 6.1.4
(www.geneious.com [6]) using the microsatellite plugin.
The multiplex PCRs proved robust giving identical peak
scores in repeated reactions, in singleplex versus multiplex
teristics of the two multiplex microsatellite PCR assays. Loci
from Gower et al., 2011. For Niger Ho = 0.596, He = 0.609,

Dye Size Range (bp) Repeat A Niger Zanzibar

Ho He Ho He

AAACCAC VIC 184–199 ATT 6 0.42 0.37 0.02 0.02

VIC 245–284 AAT 13 0.76 0.72 0.84 0.80

NED 184–240 ACTC 15 0.94 0.85 0.86 0.88

G NED 253–265 AAT 4 0.00 0.00 0.00 0.00

NED 309–321 AAT 7 0.48 0.44 0.84 0.76

6-FAM 197–227 AAT 11 0.46 0.76 0.46 0.86

6-FAM 270–366 AAT 30 0.76 0.86 0.94 0.86

A PET 201–225 ATT 9 0.74 0.67 0.76 0.68

PET 293–311 AAT 7 0.46 0.62 0.42 0.48

NED 155–218 AAT 21 0.84 0.90 0.56 0.89

NED 263–314 AAT 16 0.78 0.81 0.36 0.48

6-FAM 163–211 AAT 17 0.78 0.72 0.68 0.64

6-FAM 268–313 AAT 13 0.84 0.78 0.72 0.79

PET 183–207 AAT 9 0.18 0.34 0.74 0.70

PET 245–278 AAC 11 0.06 0.06 0.56 0.65

PET 282–321 AAT 14 0.76 0.81 0.84 0.83

GC VIC 183–213 ATC 9 0.68 0.58 0.68 0.69

VIC 274–301 ATC 10 0.78 0.65 0.50 0.466

dye label of the forward primer (VIC = green, NED = yellow, 6-FAM = Blue,

http://www.geneious.com
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reactions, and significant stutter peaks, n-1 products and
allelic drop-out were not observed.
Table 2 Cross reactivity of the two multiplex microsatellite PCR
assays on S. mansoni

Marker Size Range (bp)

Panel 1 C102 allelic drop-out

Sh1 245–284

Sh14 low amplification

C131 low amplification

Sh6 309–321

Sh9 low amplification

Sh3 allelic drop-out

C111 allelic drop-out

Sh7 allelic drop-out

Panel 2 Sh2 allelic drop-out

Sh5 low amplification

Sh13 allelic drop-out

Sh4 254

Sh10 168

Sh12 242–272

Sh8 allelic drop-out

Sh11 allelic drop-out

Sh15 allelic drop-out
Multiplex PCR optimisation and application on field-
collected S. haematobium miracidia and cercaria
A novel, high-throughput and cost effective non-wash
Whatman-FTA alkaline DNA elution protocol has been
developed which provides ~38 μl of eluted DNA from a
single schistosome larval stage which has been fixed on a
classic indicating Whatman-FTA card. This three-step
protocol is very simple, quick and is suitable for multi-well
processing. Individual larval DNA is alkaline eluted from a
single 2.0 mm Whatman-FTA punch and subsequently
neutralised, providing usable DNA for many downstream
applications including microsatellite and fragment analysis,
mitochondrial and nuclear DNA/gene amplification (http://
www.gelifesciences.com). The solutions (1 and 2) needed
for the DNA elution steps can be easily made with standard
laboratory chemicals at an insignificant cost, especially
compared to alternative DNA preparation methods.
Individual S. haematobium miracidia were collected

directly from individual urine samples of infected children
in Niger and Pemba Island (Zanzibar, United Republic of
Tanzania [7]). S. haematobium cercariae were also
obtained from naturally infected Bulinus globosus snails
from Niger. All samples were collected and individually
preserved on Whatman-FTA cards [8, 9].
DNA elutions were carried out in low profile 1.2 ml

96 square well storage microplates with 96 square well
sealing cap mats which facilitates DNA elution. The
2.0 mm Whatman-FTA punch containing the DNA from
a single larval stage was incubated at room temperature
in 14 μl of Solution 1 (0.1 M NaOH, 0.3 mM EDTA,
pH13.0) for 5 mins. Subsequently, 26 μl of Solution 2
(0.1 M Tris–HCl, pH7.0) was added, the mixture was
pulse vortexed three times, incubated for a further ten
minutes at room temperature and then pulse vortexed
ten times. The eluted DNA was then transferred to a 96
well storage plate and either used immediately or stored
at -20 °C for future use.
The two multiplex microsatellite PCRs were performed

on each available sample in 12.5 μl reactions using 2 μl of
the eluted DNA and the Type-it Microsatellite PCR Kit
(Qiagen) according to the manufacturer’s protocol with
the addition of 1.25 μl of the Type-it Microsatellite PCR
Kit Q-Solution. Optimal cycling parameters were, an
initial denaturing step of 95 °C for 5 mins followed by
32 cycles of 95 °C for 30 s, 54 °C for 90 s, 72 °C for 3 mins
and followed by a final elongation step of 60 °C for 30
mins. Reactions were checked by 3 % agarose gel electro-
phoresis and then diluted 1 in 10 before being denatured
and injected at an optimal speed of 12 s into the Applied
Biosystems 3130xl DNA analyser for analysis.
Allele peaks were checked and edited using Geneious
6.1.4 (www.geneious.com [6]) before being placed into
amplicon size “bins” and exported for analysis. Panel 1
and 2 allele data were compiled for each sample for
analysis (Additional file 1: Table S1). Data were analysed
from ten miracidia, from five children from Koutoukale
Zeno (Lat. 13.680, Long. 1.738) in Niger, five children
from Chambani school (Lat. 5.33457 Long. 39.77256) on
Pemba Island, Zanzibar, United Republic of Tanzania
and also from 16 cercariae from two infected Bulinus
snails from Niger.
All loci amplified successfully with no significant stutter

peaks or n-1 products. Whilst low peak height was often
observed in the loci Sh7 (Panel 1) compared to the other
loci and was lower in samples from Niger compared to
Pemba, the data were still scorable. Genetic diversity
indices were calculated using the program GenAlEx 6.5
[10] and the presence of null alleles and allele dropout
was evaluated using Micro-Checker [11]. The numbers of
alleles observed across the loci ranged from 2 to 33 with
loci C131 being the least diverse. Higher genetic diversity
was observed in the Pembamiracidial population com-
pared to that from Niger (Table 1). Cercariae obtained
from each individual snail had identical genotypes, show-
ing they were clonal, derived from a single miracidium.

Inter-species specificity
The cross-reactivity of the multiplex microsatellite PCRs
was also assessed on S. mansoni, which causes intestinal
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schistosomiasis and is very common throughout Africa
and can sometimes be found ectopically excreted in urine
samples in endemic co-infection foci [12]. Singleplex and
multiplex reactions were performed on 10 ng of reference
gDNA from individual S. mansoni male worms obtained
from the Schistosomiasis Collection at the Natural History
Museum (SCAN [5]). Cross-reactivity was found to be
low: seven loci failed to amplify, six gave low and/or non-
specific amplification, two exhibited a size shift and only
three among the total of 18 loci amplified well and were
within the size range expected (Table 2).
In conclusion, this study describes two novel robust

and informative multiplex microsatellite assays enabling
the simultaneous amplification of 18 individual loci; facili-
tating population genetic analysis of all S. haematobium
life-cycle stages. Protocols are presented that facilitate
high-throughput, and cost effective processing and robust
genetic analysis of S. haematobium larval stages. Such
tools can greatly assist large-scale population genetic
analysis of human schistosome populations such as that
now underway within the SCORE programme (http://
score.uga.edu). The alkaline elution of larval schistosome
DNA from Whatman-FTA stored samples is simple,
quick, high-throughput and low cost, providing adequate
amounts of gDNA preparations for multiple molecular
analyses and repeats, significantly overcoming the limita-
tions encountered from the standard Whatman-FTA
preparations [2]. Additionally, the multiplexing of the
microsatellite loci significantly reduces the resources
associated with genotyping multiple microsatellite loci for
analysis.
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