646 research outputs found

    The effect of swimsuit resistance on freestyle swimming race time.

    No full text
    It is known that swimming equipment (suit, cap and goggles) can affect the total resistance of a swimmer, and therefore impact the resulting swimming speed and race time. After the 2009 swimming world championships (WC) the international swimming federation (FINA) banned a specific type of full body suit, which resulted in an increase in race times for subsequent WC events. This study proposes that the 2009 suits provided a reduction in swimming resistance and aims to quantify this resistance reduction for male and female freestyle events. Due to the practical difficulties of testing a large sample of swimmers a simulation approach is adopted. To quantify the race time improvement that the 2009 suits provided, an equivalent 2009 “no-suit” dataset is created, incorporating the general trend of improving swimming performance over time, and compared to the actual 2009 times. A full race simulation is developed where the start, turn, underwater and surface swimming phases are captured. Independent resistance models are used for surface and underwater swimming; coupled with a leg propulsion model for underwater undulatory swimming and freestyle flutter kick, and a single element arm model to simulate freestyle arm propulsion. A validation is performed to ensure the simulation captures the change in swimming speed with changes to resistance and is found to be within 5% of reality. Race times for an equivalent “no-suit” 2009 situation are simulated and the total resistance reduced to achieve the actual 2009 race times. An average resistance reduction of 4.8% provided by the 2009 suits is identified. A factor of 0.47 ± 10%, to convert resistance changes to freestyle race time changes is determine

    Photoelectron Spectra Of Amorphous Sixhy Alloy Films: The Effect Of Microstructure On The Si-2p Level Shift

    Get PDF
    Depending on the deposition conditions, amorphous SixH y alloy films prepared by planar rf reactive magnetron sputtering exhibit one of three types of microstructure: (i) type A with no discernible microstructural features down to the 20-Å level and with a smooth uniform density; (ii) type B consisting of high-density regions of 50-200-Å lateral dimensions separated by a low-density network; and (iii) a two-level (type C) microstructure consisting of 300-500-Å dimensions columns separated by a pronounced low-density network. The columns, in turn, are composed of 50-200-Å dimension high-density regions interspersed with low-density network. The Si-2p level in these alloy films, determined by x-ray photoelectron spectroscopy, is observed to be strongly influenced by the microstructure of the film. A shift in the Si-2p level, systematically varying with the hydrogen concentration, is observed in alloy films with type B and type C microstructures. No shift is observed, irrespective of the hydrogen concentration, in alloy films with type A microstructure. The photoelectron spectra are examined in the light of the vibrational spectra of the films as measured by Fourier transform infrared techniques. The dependence of the Si-2p level shift on the microstructure and the variation with hydrogen concentration are explained qualitatively in terms of the differences in the silicon-hydrogen bonding in amorphous SixHy films with dissimilar microstructures.6072530253

    Metabolic niches and biodiversity : a test case in the deep sea benthos

    Get PDF
    The great anthropogenic alterations occurring to carbon availability in the oceans necessitate an understanding of the energy requirements of species and how changes in energy availability may impact biodiversity. The deep-sea floor is characterized naturally by extremely low availability of chemical energy and is particularly vulnerable to changes in carbon flux from surface waters. Because the energetic requirements of organisms impact nearly every aspect of their ecology and evolution, we hypothesize that species are adapted to specific levels of carbon availability and occupy a particular metabolic niche. We test this hypothesis in deep-sea, benthic invertebrates specifically examining how energetic demand, axes of the metabolic niche, and geographic range size vary over gradients of chemical energy availability. We find that benthic invertebrates with higher energetic expenditures, and ecologies associated with high energy demand, are located in areas with higher chemical energy availability. In addition, we find that range size and location of deep-sea, benthic species is determined by geographic patterns in chemical energy availability. Our findings indicate that species may be adapted to specific energy regimes, and the metabolic niche can potentially link scales from individuals to ecosystems as well as adaptation to patterns in biogeography and biodiversity

    Septation and valvar formation in the outflow tract of the embryonic chick heart

    Get PDF
    There is no agreement, in the chick, about the number of the endocardial cushions within the outflow tract or their pattern of fusion. Also, little is known of their relative contributions to the formation of the arterial valves, the subpulmonary infundibulum, and the arterial valvar sinuses. As the chick heart is an important model for studying septation of the outflow tract, our objective was to clarify these issues. Normal septation of the outflow tract was studied in a series of 60 staged chick hearts, by using stained whole-mount preparations, serial sections, and scanning electron microscopy. A further six hearts were examined subsequent to hatching. At stage 21, two pairs of endocardial cushions were seen within the developing outflow tract. One pair was positioned proximally, with the other pair located distally. By stage 25, a third distal cushion had developed. This finding was before the appearance of two further, intercalated, endocardial cushions, also distally positioned, which were first seen at stage 29. In the arterial segment, the aortic and pulmonary channels were separated by the structure known as the aortopulmonary septum. The dorsal limb of this septum penetrated the distal dorsal cushion, whereas the ventral limb grew between the remaining two distal cushions, both of which were positioned ventrally. The three distal endocardial cushions, and the two intercalated endocardial cushions, contributed to the formation of the leaflets and sinuses of the arterial roots. The two proximal cushions gave rise to a transient septum, which later became transformed into the muscular component of the subpulmonary infundibulum. Concomitant with these changes, an extracardiac tissue plane was formed which separated this newly formed structure from the sinuses of the aortic root. Our study confirms that three endocardial cushions are positioned distally, and two proximally, within the developing outflow tract of the chick. The pattern of the distal cushions, and the position of the ventral limb of the aortopulmonary septum, differs significantly from that seen in mammals. Anat Rec 264:273-283, 2001. (C) 2001 Wiley-Liss, Inc.Animal science

    Limits on Cosmological Variation of Strong Interaction and Quark Masses from Big Bang Nucleosynthesis, Cosmic, Laboratory and Oklo Data

    Get PDF
    Recent data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of possible variation of other constants. We discuss variation of strong scale and quark masses. We derive the limits on their relative change from (i) primordial Big-Bang Nucleosynthesis (BBN); (ii) Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals.Comment: 10 pages 2 figurs: second version have several references added and some new comment

    Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)

    Full text link
    The \textit{Sun Watcher using Active Pixel system detector and Image Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2} (PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel centered at 174 \AA. These data, together with \textit{Atmospheric Imaging Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 and AIA 171 channels. We observe that bright points are seen in EUV channels corresponding to a magnetic-flux of the order of 101810^{18} Mx. We find that there exists a good correlation between total emission from the bright point in several UV\todash EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings and we have attempted to find the oscillation periods in bright points and their connection to magnetic flux changes. The observed periods are generally long (10\todash 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Why dig looted tombs? Two examples and some answers from Keushu (Ancash highlands, Peru)

    Get PDF
    Looted tombs at Andean archaeological sites are largely the result of a long tradition of trade in archaeological artefacts coupled with the 17th century policy of eradicating ancestor veneration and destroying mortuary evidence in a bid to “extirpate idolatry”. On the surface, looted funerary contexts often present abundant disarticulated and displaced human remains as well as an apparent absence of mortuary accoutrements. What kind of information can archaeologists and biological anthropologists hope to gather from such contexts? In order to gauge the methodological possibilities and interpretative limitations of targeting looted tombs, we fully excavated two collective funerary contexts at the archaeological site of Keushu (district and province of Yungay, Ancash, Peru; c. 2000 B.C.-A.D. 1600), which includes several dozen tombs, many built under large boulders or rock shelters, all of which appear disturbed by looting. The first is located in the ceremonial sector and excavation yielded information on four individuals; the second, in the funerary and residential sector, held the remains of seventy individuals - adults and juveniles. Here, we present and discuss the recovered data and suggest that careful, joint excavations by archaeologists and biological anthropologists can retrieve evidence of past mortuary practices, aid the biological characterisation of mortuary populations and help distinguish between a broad range of looting practices and post-depositional processes

    The FEBEX benchmark test: case definition and comparison of modelling approaches

    Get PDF
    The FEBEX (Full-scale Engineered Barriers Experiment in Crystalline Host Rock) ‘‘in situ’’ test was installed at the Grimsel Test Site underground laboratory (Switzerland) and is a near-to-real scale simulation of the Spanish reference concept of deep geological storage in crystalline host rock. A modelling exercise, aimed at predicting field behaviour, was divided in three parts. In Part A, predictions for both the total water inflow to the tunnel as well as the water pressure changes induced by the boring of the tunnel were required. In Part B, predictions for local field variables, such as temperature, relative humidity, stresses and displacements at selected points in the bentonite barrier, and global variables, such as the total input power to the heaters were required. In Part C, predictions for temperature, stresses, water pressures and displacements in selected points of the host rock were required. Ten Modelling Teams from Europe, North America and Japan were involved in the analysis of the test. Differences among approaches may be found in the constitutive models used, in the simplifications made to the balance equations and in the geometric symmetries considered. Several aspects are addressed in the paper: the basic THM physical phenomena which dominate the test response are discussed, a comparison of different modelling results with actual measurements is presented and a discussion is given to explain the performance of the various predictions.Peer Reviewe
    corecore