332 research outputs found

    Instructing Students How to Use Evidence-based Technology Interventions with Older Adults

    Get PDF
    Current evidence supports the use of technology with older adults and the Accreditation Council for Occupational Therapy Education standards for entry-level occupational therapy programs mandate instruction on the use of technology to support occupational performance. The literature does not clearly define specific strategies to teach entry-level occupational therapy students how to implement technology interventions with older adults. The purpose of this paper is to provide OT educators with recommendations for teaching entry-level students to use evidence-based technology with older adults. The authors reviewed current literature. The recent evidence helped the authors define practical curriculum recommendations for instructing entry-level occupational therapy students to integrate technology into older adults’ interventions. Recommendations include use of telehealth visits, teleconferencing, iPad applications, smart phone applications, texting, emails, and video applications. With technology continually changing, occupational therapy instructors must increase their awareness of new applications and computer programs that occupational therapists can utilize in older adult interventions to maximize knowledge translation to their students

    The Bright Side of Hematopoiesis: Regulatory Roles of ARID3a/Bright in Human and Mouse Hematopoiesis

    Get PDF
    ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor

    Tapping the “Town and Gown” Potential for Correctional Health Research Collaborations

    Get PDF
    Background: Collaborations between juvenile justice systems (town) and academia (gown) promise to significantly enhance what we understand about high rates of sexually transmitted infections (STIs) found among detained populations, particularly African American young women. However, research related to the sexual health of adolescent detainees has not occurred in proportion to the magnitude of issues found in the population. While there are many challenges to conducting research with this population, there are also lessons learned and best practices from other studies that may provide guidance. Methods: In 2015, we implemented a pilot project with young women in a detention center to understand the association between STIs and relationship dynamics. Using a formative assessment-based approach, the team periodically compared expectations to actual milestones and outcomes. This approach has provided feedback, guidance and lessons learned that we will use to adjust our pilot project. Results: Three challenges emerged from our review: concerns related to different agendas, bureaucratic difficulties and human protection. In addressing these challenges, we identified study procedures to revise and to incorporate into future works. Conclusions: Juvenile justice and academic partnerships require extensive pre-research work to account for the many challenges to implementing and conducting projects with this population. However, “town and gown” approaches to understanding and improving the sexual health of detainees can result in a more complete assessment of these issues compared to either a solely academic or juvenile justice investigation

    Effects of a beta-agonist treatment, Vitamin D3 supplementation and electrical stimulation on meat quality of feedlot steers

    Get PDF
    In this study, 20 young steers received no beta-agonist (C), 100 animals all received zilpaterol hydrocholoride (Z), with 1 group only receiving Z while the other 4 groups received zilpaterol and vitamin D3 at the following levels (IU/animal/day) and durations before slaughter: 7 million for 3 days (3D7M); 7 million for 6 days (6D7M); 7 million for 6 days with 7 days nor supplementation (6D7M7N) and 1 million for 9 days (9D1M). Left carcass sides were electrically stimulated (ES) and the right side not stimulated (NES). Samples were aged for 3 or 14 days post mortem. Parameters included Warner –Bratzler shear force (WBSF), myofibril filament length, sarcomere length and calpastatin and calpain enzyme activity. Both ES and prolonged aging reduced WBSF (P<0.001). 6D7M, 6D7M7N and Z remained significantly tougher than C (P<0.001), while 3D7M and 9D1M improved WBSF under NES conditions. ES is more effective to alleviate beta-agonist induced toughness than high vitamin D3 supplements.THRIP and the RMRDT.http://www.elsevier.com/locate/meatscinf201

    Effect of dietary beta-agonist treatment, vitamin D-3 supplementation and electrical stimulation of carcasses on colour and drip loss of steaks from feedlot steers

    Get PDF
    In this study, 20 young steers received no beta-agonist (C) and 100 animals all received zilpaterol hydrochloride (Z), with 1 group receiving Z while the other 4 groups receiving Z and vitamin D3 at the following levels (IU/animal/day) and durations before slaughter: 7 million for 3 days (3D7M) or 6 days (6D7M), 7 million for 6 days with 7 days no supplementation (6D7M7N) and 1 million for 9 days (9D1M). Left carcass sides were electrically stimulated (ES) and right sides not (NES). Samples were analysed fresh or vacuum-aged for 14 days post mortem. Parameters included drip loss and instrumental colour measurements. In general, zilpaterol showed increased drip loss, lighter meat, and reduced redness. Vitamin D3 supplementation could not consistently overcome these negative effects. All vitamin D3 treatments reduced drip loss of stimulated aged steaks.THRIP and the RMRDT.http://www.elsevier.com/locate/meatscinf201

    FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    Get PDF
    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I)

    ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival: A comprehensive analysis from the Ovarian Cancer Association Consortium and The Cancer Genome Atlas

    Get PDF
    &lt;b&gt;Objective&lt;/b&gt; &lt;i&gt;ABCB1&lt;/i&gt; encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC).&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; The best candidates from fine-mapping analysis of 21 &lt;i&gt;ABCB1&lt;/i&gt; SNPs tagging C1236T (rs1128503), G2677T/A (rs2032582), and C3435T (rs1045642) were analysed in 4616 European invasive EOC patients from thirteen Ovarian Cancer Association Consortium (OCAC) studies and The Cancer Genome Atlas (TCGA). Additionally we analysed 1,562 imputed SNPs around ABCB1 in patients receiving cytoreductive surgery and either ‘standard’ first-line paclitaxel–carboplatin chemotherapy (n = 1158) or any first-line chemotherapy regimen (n = 2867). We also evaluated ABCB1 expression in primary tumours from 143 EOC patients.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Result&lt;/b&gt; Fine-mapping revealed that rs1128503, rs2032582, and rs1045642 were the best candidates in optimally debulked patients. However, we observed no significant association between any SNP and either progression-free survival or overall survival in analysis of data from 14 studies. There was a marginal association between rs1128503 and overall survival in patients with nil residual disease (HR 0.88, 95% CI 0.77–1.01; p = 0.07). In contrast, &lt;i&gt;ABCB1&lt;/i&gt; expression in the primary tumour may confer worse prognosis in patients with sub-optimally debulked tumours.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusion&lt;/b&gt; Our study represents the largest analysis of &lt;i&gt;ABCB1&lt;/i&gt; SNPs and EOC progression and survival to date, but has not identified additional signals, or validated reported associations with progression-free survival for rs1128503, rs2032582, and rs1045642. However, we cannot rule out the possibility of a subtle effect of rs1128503, or other SNPs linked to it, on overall survival.&lt;p&gt;&lt;/p&gt

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
    corecore