72 research outputs found

    Direct photons at forward rapidities in high-energy pp collisions

    Get PDF
    We investigate direct photon production in pp collisions at the energies of RHIC, CDF and LHC, at different rapidities employing various color-dipole models. The cross section peaks at forward rapidities due to the abelian dynamics of photon radiation. This opens new opportunities for measurement of direct photons at forward rapidities, where the background from radiative hadronic decays is strongly suppressed. Our model calculations show that photon production is sensitive to the gluon saturation effects, and strongly depends on the value of the anomalous dimension.Comment: 7 pages, 8 figures, minor clarifications added. The version to appear in PL

    Non-linear QCD dynamics in two-photon interactions at high energies

    Get PDF
    Perturbative QCD predicts that the growth of the gluon density at high energies should saturate, forming a Color Glass Condensate (CGC), which is described in mean field approximation by the Balitsky-Kovchegov (BK) equation. In this paper we study the γγ\gamma \gamma interactions at high energies and estimate the main observables which will be probed at future linear colliders using the color dipole picture. We discuss in detail the dipole - dipole cross section and propose a new relation between this quantity and the dipole scattering amplitude. The total γγ\gamma \gamma, γγ\gamma^{*} \gamma^{*} cross-sections and the real photon structure function F2γ(x,Q2)F_2^{\gamma}(x,Q^2) are calculated using the recent solution of the BK equation with running coupling constant and the predictions are compared with those obtained using phenomenological models for the dipole-dipole cross section and scattering amplitude. We demonstrate that these models are able to describe the LEP data at high energies, but predict a very different behavior for the observables at higher energies. Therefore we conclude that the study of γγ\gamma \gamma interactions can be useful to constrain the QCD dynamics.Comment: 11 pages, 5 figures. Version to be published in European Physical Journal

    Energy dependence of the saturation scale and the charged multiplicity in pp and AA collisions

    Full text link
    A natural framework to understand the energy dependence of bulk observables from lower energy experiments to the LHC is provided by the Color Glass Condensate, which leads to a "geometrical scaling" in terms of an energy dependent saturation scale Q_s. The measured charged multiplicity, however, seems to grow faster (~\sqrt{s}^0.3) in nucleus-nucleus collisions than it does for protons (~\sqrt{s}^0.2), violating the expectation from geometric scaling. We argue that this difference between pp and AA collisions can be understood from the effect of DGLAP evolution on the value of the saturation scale, and is consistent with gluon saturation observations at HERA.Comment: RevTeX, 8 pages, 4 figures. V2: modified discussion of fragmentation, published in EPJ

    Nuclear DVCS at small-x using the color dipole phenomenology

    Full text link
    Using the high energy color dipole formalism, we study the coherent and incoherent nuclear DVCS process in the small-x regime. We consider simple models for the elementary dipole-hadron scattering amplitude that captures main features of the dependence on atomic number A, on energy and on momentum transfer t. Using the obtained amplitudes we make predictions for the nuclear DVCS cross section at photon level in the collider kinematics.Comment: 6 pages, 5 figures. Version to be published in European Physical Journal

    Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions

    Full text link
    We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to the values of the charm- and bottom-quark masses, and we provide additional public PDF sets for a wide range of these heavy-quark masses. We quantify the impact of varying m_c and m_b on the cross sections for W, Z and Higgs production at the Tevatron and the LHC. We generate 3- and 4-flavour versions of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and alpha_S determined from fits in the 5-flavour scheme, including the eigenvector PDF sets necessary for calculation of PDF uncertainties. As an example of their use, we study the difference in the Z total cross sections at the Tevatron and LHC in the 4- and 5-flavour schemes. Significant differences are found, illustrating the need to resum large logarithms in Q^2/m_b^2 by using the 5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are imposed on associated (massive) b-quarks, as is the case for the experimental measurement of Z b bbar production and similar processes.Comment: 40 pages, 11 figures. Grids can be found at http://projects.hepforge.org/mstwpdf/ and in LHAPDF V5.8.4. v2: version published in EPJ

    Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk

    Get PDF

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    A candidate locus for variation in dispersal rate in a butterfly metapopulation

    No full text
    Frequent extinctions of local populations in metapopulations create opportunities for migrant females to establish new populations. In a metapopulation of the Glanville fritillary butterfly (Melitaea cinxia), more mobile individuals are more likely to establish new populations, especially in habitat patches that are poorly connected to existing populations. Here we show that flight metabolic rate and the frequency of a specific allele of the metabolic enzyme phosphoglucose isomerase (pgi) were both highest in newly established, isolated populations. Furthermore, genotypes with this pgi allele had elevated flight metabolic rates. These results suggest that genetic variation in pgi or a closely linked locus has a direct effect on flight metabolism, dispersal rate, and thereby on metapopulation dynamics in this species. These results also contribute to an emerging understanding of the mechanisms by which population turnover in heterogeneous landscapes may maintain genetic and phenotypic variation across populations
    corecore