364 research outputs found

    Optimizations of sub-100 nm Si/SiGe MODFETs for high linearity RF applications

    Get PDF
    Based on careful calibration in respect of 70 nm n-type strained Si channel S/SiGe modulation doped FETs (MODFETs) fabricated by Daimler Chrysler, numerical simulations have been used to study the impact of the device geometry and various doping strategies on device performance and linearity. The device geometry is sensitive to both RF performance and device linearity. Doped channel devices are found to be promising for high linearity applications. Trade-off design strategies are required for reconciling the demands of high device performance and high linearity simultaneously. The simulations also suggest that gate length scaling helps to achieve higher RF performance, but decreases the linearity

    Modelling the impact of climate change on Tanzanian forests

    Get PDF
    This research article was published by Wiley Online Library in 2020Aim: Climate change is pressing extra strain on the already degraded forest eco system in Tanzania. However, it is mostly unknown how climate change will affect the distribution of forests in the future. We aimed to model the impacts of climate change on natural forests to help inform national-level conservation and mitigation strategies. Location: Tanzania. Methods: We conducted maximum entropy (MaxEnt) modelling to simulate forest habitat suitability using the Tanzanian national forest inventory survey (1,307 oc currences) and environmental data. Changes in forest habitats were simulated under two Representative Concentration Pathways (RCPs) emission scenarios RCP 4.5 and RCP 8.5 for 2055 and 2085. Results: The results indicate that climate change will threaten forest communities, especially fragmented strips of montane forests. Even under optimistic emission scenario, the extent of montane forest is projected to almost halve by 2085, inter secting many biodiversity hotspots across the Eastern Arc Mountains. Similarly, cli mate change is predicted to threaten microhabitat forests (i.e. thickets), with losses exceeding 70% by 2085 (RCP8.5). Other forest habitats are predicted to decrease (lowland forest and woodland) representing essential ecological networks, whereas suitable habitats for carbon-rich mangroves are predicted to expand by more than 40% at both scenarios. Conclusions: Climate change will impact forests by accelerating habitat loss, and fragmentation and the remaining land suitable for forests will also be subject to pres sures associated with rising demand for food and biofuels. These changes are likely to increase the probability of adverse impacts to the country's indigenous flora and fauna. Our findings, therefore, call for a shift in conservation efforts, focusing on (i) the enhanced management of existing protected areas that can absorb the impacts of future climate change, and (ii) expanding conservation efforts into newly suitable regions through effective land use planning and land reclamation, helping to preserve and enhance forest connectivity between fragmented patches

    Can ecosystem-based deep-sea fishing be sustained?

    Get PDF
    Can there ever be a truly sustainable deep-sea fishery and if so, where and under what conditions? Ecosystembased fisheries management requires that this question be addressed such that habitat, bycatch species, and targeted fish populations are considered together within an ecosystem context. To this end, we convened the first workshop to develop an ecosystem approach to deep-sea fisheries and to ask whether deep-sea species could be fished sustainably. The workshop participants were able to integrate bycatch information into their framework but found it more difficult to integrate other ecosystem indicators such as habitat characteristics. (First two paragraphs from the Executive Summary

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals

    Get PDF
    The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ. This group is sister to gold corals (Primnoidae Milne Edwards, 1857) and deep-sea bamboo corals (Keratoisidinae Gray, 1870), whose diversity also peaks in the deep sea. Nine species of Chrysogorgia that were described from depths shallower than 200 m, and mtMutS haplotypes sequenced from specimens sampled as shallow as 101 m, suggest a shallow-water emergence of some Chrysogorgia species

    Exploring the tensions of being and becoming a medical educator

    Get PDF
    BackgroundPrevious studies have identified tensions medical faculty encounter in their roles but not specifically those with a qualification in medical education. It is likely that those with postgraduate qualifications may face additional tensions (i.e., internal or external conflicts or concerns) from differentiation by others, greater responsibilities and translational work against the status quo. This study explores the complex and multi-faceted tensions of educators with qualifications in medical education at various stages in their career.MethodsThe data described were collected in 2013–14 as part of a larger, three-phase mixed-methods research study employing a constructivist grounded theory analytic approach to understand identity formation among medical educators. The over-arching theoretical framework for the study was Communities of Practice. Thirty-six educators who had undertaken or were undertaking a postgraduate qualification in medical education took part in semi-structured interviews.ResultsParticipants expressed multiple tensions associated with both becoming and being a healthcare educator. Educational roles had to be juggled with clinical work, challenging their work-life balance. Medical education was regarded as having lower prestige, and therefore pay, than other healthcare career tracks. Medical education is a vast speciality, making it difficult as a generalist to keep up-to-date in all its areas. Interestingly, the graduates with extensive experience in education reported no fears, rather asserting that the qualification gave them job variety.ConclusionThis is the first detailed study exploring the tensions of educators with postgraduate qualifications in medical education. It complements and extends the findings of the previous studies by identifying tensions common as well as specific to active students and graduates. These tensions may lead to detachment, cynicism and a weak sense of identity among healthcare educators. Postgraduate programmes in medical education can help their students identify these tensions in becoming and develop coping strategies. Separate career routes, specific job descriptions and academic workload models for medical educators are recommended to further the professionalisation of medical education

    "If only I had taken the other road...": Regret, risk and reinforced learning in informed route-choice

    Get PDF
    This paper presents a study of the effect of regret on route choice behavior when both descriptional information and experiential feedback on choice outcomes are provided. The relevance of Regret Theory in travel behavior has been well demonstrated in non-repeated choice environments involving decisions on the basis of descriptional information. The relation between regret and reinforced learning through experiential feedbacks is less understood. Using data obtained from a simple route-choice experiment involving different levels of travel time variability, discrete-choice models accounting for regret aversion effects are estimated. The results suggest that regret aversion is more evident when descriptional information is provided ex-ante compared to a pure learning from experience condition. Yet, the source of regret is related more strongly to experiential feedbacks rather than to the descriptional information itself. Payoff variability is negatively associated with regret. Regret aversion is more observable in choice situations that reveal risk-seeking, and less in the case of risk-aversion. These results are important for predicting the possible behavioral impacts of emerging information and communication technologies and intelligent transportation systems on travelers' behavior. © 2012 Springer Science+Business Media, LLC

    A Novel Requirement for Janus Kinases as Mediators of Drug Resistance Induced by Fibroblast Growth Factor-2 in Human Cancer Cells

    Get PDF
    The development of resistance to chemotherapy is a major cause of cancer-related death. Elucidating the mechanisms of drug resistance should thus lead to novel therapeutic strategies. Fibroblast growth factor (FGF)-2 signaling induces the assembly of a multi-protein complex that provides tumor cells with the molecular machinery necessary for drug resistance. This complex, which involves protein kinase C (PKC) ε, v-raf murine sarcoma viral oncogene homolog B1 (B-RAF) and p70 S6 kinase β (S6K2), enhances the selective translation of anti-apoptotic proteins such as B-cell leukaemia/lymphoma-2 (BCL-2) and inhibitors of apoptosis protein (IAP) family members and these are able to protect multiple cancer cell types from chemotherapy-induced cell death. The Janus kinases (JAKs) are most noted for their critical roles in mediating cytokine signaling and immune responses. Here, we show that JAKs have novel functions that support their consideration as new targets in therapies aimed at reducing drug resistance. As an example, we show that the Janus kinase TYK2 is phosphorylated downstream of FGF-2 signaling and required for the full phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Moreover, TYK2 is necessary for the induction of key anti-apoptotic proteins, such as BCL-2 and myeloid cell leukemia sequence (MCL) 1, and for the promotion of cell survival upon FGF-2. Silencing JAK1, JAK2 or TYK2 using RNA interference (RNAi) inhibits FGF2-mediated proliferation and results in the sensitization of tumor cells to chemotherapy-induced killing. These effects are independent of activation of signal transducer and activator of transcription (STAT) 1, STAT3 and STAT5A/B, the normal targets of JAK signaling. Instead, TYK2 associates with the other kinases previously implicated in FGF-2-mediated drug resistance. In light of these findings we hypothesize that TYK2 and other JAKs are important modulators of FGF-2-driven cell survival and that inhibitors of these kinases will likely improve the effectiveness of other cancer therapies
    corecore