8,159 research outputs found

    Power law burst and inter-burst interval distributions in the solar wind: turbulence or dissipative SOC ?

    Full text link
    We calculate for the first time the probability density functions (PDFs) P of burst energy e, duration T and inter-burst interval tau for a known turbulent system in nature. Bursts in the earth-sun component of the Poynting flux at 1 AU in the solar wind were measured using the MFI and SWE experiments on the NASA WIND spacecraft. We find P(e) and P(T) to be power laws, consistent with self-organised criticality (SOC). We find also a power law form for P(tau) that distinguishes this turbulent cascade from the exponential P(tau) of ideal SOC, but not from some other SOC-like sandpile models. We discuss the implications for the relation between SOC and turbulence.Comment: 3 pages, 1 figure. Submitted to PRL on 25th February 2000. Revised version re-submitted on 9th May 2000. Second revised version submitted Phys. Rev. E on 26th June, 200

    La unidad del pensamiento de Popper

    Get PDF
    Fil: Watkins, J. W. N. London School of Economics. Department of Philosophy, Logic and Scientific Method. Londres, Gran Bretañ

    Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection

    Get PDF
    We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.Comment: 18 pages, 10 figures, preprin

    Flows on scales of 150 Mpc?

    Get PDF
    We investigate the reality of large-scale streaming on scales of up to 150 Mpc using the peculiar motions of galaxies in three directions. New R-band CCD photometry and spectroscopy for elliptical galaxies is used. The Fundamental Plane distance indicator is calibrated using the Coma cluster and an inhomogeneous Malmquist bias correction is applied. A linear bulk-flow model is fitted to the peculiar velocities in the sample regions and the results do not reflect the bulk flow observed by Lauer and Postman (LP). Accounting for the difference in geometry between the galaxy distribution in the three regions and the LP clustersconfirms the disagreement; assuming a low-density CDM power spectrum, we find that the observed bulk flow of the galaxies in our sample excludes the LP bulk flow at the 99.8% confidence level.Comment: 16 pages, 1 figur

    Quantifying the Solar Cycle Modulation of Extreme Space Weather

    Get PDF
    By obtaining the analytic signal of daily sunspot numbers since 1818 we construct a new solar cycle phase clock that maps each of the last 18 solar cycles onto a single normalized 11 year epoch. This clock orders solar coronal activity and extremes of the aa index, which tracks geomagnetic storms at the Earth's surface over the last 14 solar cycles. We identify geomagnetically quiet intervals that are 40% of the normalized cycle, ±2π /5 in phase or ±2.2 years around solar minimum. Since 1868 only two severe (aa >300 nT) and one extreme (aa >500 nT) geomagnetic storms occurred in quiet intervals; 1–3% of severe (aa >300 nT) geomagnetic storms and 4–6% of C‐, M‐, and X‐class solar flares occurred in quiet intervals. This provides quantitative support to planning resilience against space weather impacts since only a few percent of all severe storms occur in quiet intervals and their start and end times are quantifiable

    Hubble flow variance and the cosmic rest frame

    Get PDF
    We characterize the radial and angular variance of the Hubble flow in the COMPOSITE sample of 4534 galaxies, on scales in which much of the flow is in the nonlinear regime. With no cosmological assumptions other than the existence of a suitably averaged linear Hubble law, we find with decisive Bayesian evidence (ln B >> 5) that the Hubble constant averaged in independent spherical radial shells is closer to its asymptotic value when referred to the rest frame of the Local Group, rather than the standard rest frame of the Cosmic Microwave Background. An exception occurs for radial shells in the range 40/h-60/h Mpc. Angular averages reveal a dipole structure in the Hubble flow, whose amplitude changes markedly over the range 32/h-62/h Mpc. Whereas the LG frame dipole is initially constant and then decreases significantly, the CMB frame dipole initially decreases but then increases. The map of angular Hubble flow variation in the LG rest frame is found to coincide with that of the residual CMB temperature dipole, with correlation coefficient -0.92. These results are difficult to reconcile with the standard kinematic interpretation of the motion of the Local Group in response to the clustering dipole, but are consistent with a foreground non-kinematic anisotropy in the distance-redshift relation of 0.5% on scales up to 65/h Mpc. Effectively, the differential expansion of space produced by nearby nonlinear structures of local voids and denser walls and filaments cannot be reduced to a local boost. This hypothesis suggests a reinterpretation of bulk flows, which may potentially impact on calibration of supernovae distances, anomalies associated with large angles in the CMB anisotropy spectrum, and the dark flow inferred from the kinematic Sunyaev-Zel'dovich effect. It is consistent with recent studies that find evidence for a non-kinematic dipole in the distribution of distant radio sources.Comment: 37 pages, 9 tables, 13 figures; v2 adds extensive new analysis (including additional subsections, tables, figures); v3 adds a Monte Carlo analysis (with additional table, figure) which further tightens the statistical robustness of the dipole results; v4 adds further clarifications, small corrections, references and discussion of Planck satellite results; v5 typos fixed, matches published versio
    • 

    corecore