204 research outputs found

    MC64: A web platform to test bioinformatics algorithms in a many-core architecture

    Get PDF
    New analytical methodologies, like the so-called "next-generation sequencing" (NGS), allow the sequencing of full genomes with high speed and reduced price. Yet, such technologies generate huge amounts of data that demand large raw computational power. Many-core technologies can be exploited to overcome the involved bioinformatics bottleneck. Indeed, such hardware is currently in active development. We have developed parallel bioinformatics algorithms for many-core microprocessors containing 64 cores each. Thus, the MC64 web platform allows executing high-performance alignments (Needleman-Wunsch, Smith-Waterman and ClustalW) of long sequences. The MC64 platform can be accessed via web browsers, allowing easy resource integration into third-party tools. Furthermore, the results obtained from the MC64 include time-performance statistics that can be compared with other platform

    Incremental Shuttle Walking Test Distance and Autonomic Dysfunction Predict Survival in Pulmonary Arterial Hypertension

    Get PDF
    Background To ensure effective monitoring of pulmonary arterial hypertension (PAH), a simple, reliable assessment of exercise capacity applicable over a range of disease severity is needed. The aim of this study was to assess the ability of the incremental shuttle walk test (ISWT) to correlate with disease severity, measure sensitivity to change, and predict survival in PAH. Methods We enrolled 418 treatment-naïve patients with PAH with baseline ISWT within 3 months of cardiac catheterization. Clinical validity and prognostic value of ISWT distance were assessed at baseline and 1 year. Results ISWT distance was found to correlate at baseline with World Health Organization functional class, Borg score, and hemodynamics without a ceiling effect (all p 18 beats/min, highest SBP, change in SBP, and 3-minute SBP ratio) were significant predictors of survival (all p < 0.05). Conclusions In patients with PAH, the ISWT is simple to perform, allows assessment of maximal exercise capacity, is sensitive to treatment effect, predicts outcome, and has no ceiling effect. Also, measures of autonomic function made post-exercise predict survival in PAH

    The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.

    Get PDF
    The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha

    Carboniferous and Permian Rugosochonetidae (Brachiopoda) from West Spitsbergen

    Full text link
    The rugosochonetid brachiopod species Lissochonetes geinitzianus from the Kazimovian of the Nordenskioldbreen Formation, and Dyoros (Dyoros) mucronata sp. nov., Dyoros (Dyoros) spitzbergianus and Lissochonetes superba from the Artinskian to latest Permian Kapp Starostin Formation in West Spitsbergen are described and figured. Dyoros is generally restricted to the Boreal Realm, whereas Lissochonetes is mostly distributed in the Boreal Realm, but occasionally present in the Palaeoequatorial and Gondwanan Realms<br /

    Early carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China

    Full text link
    38 brachiopod species in 27 genera and subgenera are described from the Yudong Formation in the Shidian-Baoshan area, west Yunnan, southwest China. New taxa include two new subgenera: Unispirifer (Septimispirifer) and Brachythyrina (Longathyrina), and seven new species: Eomarginifera yunnanensis, Marginatia cylindrica, Unispirifer (Unispirifer) xiangshanensis, Unispirifer (Septimispirifer) wafangjieensis, Brachythyrina (Brachythyrina) transversa, Brachythyrina (Longathyrina) baoshanensis, and Girtyella wafangjieensis. Based on the described material and constraints from associated coral and conodont faunas, the age of the brachiopod fauna from the Yudon Formation is considered late Tournaisian (Early Carboniferous), with a possibility extending into earlyViseacutean.<br /

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore