198 research outputs found

    An important step forward for the future development of an easy and fast procedure for identifying the most dangerous wine spoilage yeast, Dekkera bruxellensis, in wine environment

    Get PDF
    Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridisation (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells autofluorescence, fluorophore inadequate selection and probes low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used and the matrix and cells fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment a red-emitting fluorophore should be used. Good probe performance and specificity was achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.This work was co-financed by Foundation for Science and Technology (FCT) and the European Union through the European Regional Development Fund ALENTEJO 2020 through the projects PTDC/BBB-IMG/0046/2014 and ALT20-03-0145-FEDER-000015, respectively. Marina González-Pérez acknowledges FCT for the economic support through the post-doctoral grant SFRH/BPD/100754/2014

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway

    Full text link

    Search for charged Higgs bosons produced in top-quark decays or in association with top quarks and decaying via H±→τ±ντ in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Charged Higgs bosons produced either in top-quark decays or in association with a top quark, subsequently decaying via H±→τ±ντ, are searched for in 140  fb−1 of proton-proton collision data at s=13  TeV recorded with the ATLAS detector. Depending on whether the top quark is produced together with the H± decays hadronically or semileptonically, the search targets τ+jets or τ+lepton final states, in both cases with a τ-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of 80≤mH±≤3000  GeV, upper limits at 95% confidence level are set on the production cross section of the charged Higgs boson times the branching fraction B(H±→τ±ντ) in the range 4.5 pb–0.4 fb. In the mass range 80–160 GeV, assuming the Standard Model cross section for tt¯ production, this corresponds to upper limits between 0.27% and 0.02% on B(t→bH±)×B(H±→τ±ντ).</jats:p

    Cross-section measurements for the production of a W-boson in association with high-transverse-momentum jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A set of measurements for the production of a W-boson in association with high-transverse-momentum jets is presented using 140 fb−1 of proton–proton collision data at a centre-of-mass energy of √s = 13 TeV collected by the ATLAS detector at the LHC. The measurements are performed in final states in which the W-boson decays into an electron or muon plus a neutrino and is produced in association with jets with pT > 30 GeV, where the leading jet has pT > 500 GeV. The angular separation between the lepton and the closest jet with pT > 100 GeV is measured and used to define a collinear phase space, wherein measurements of kinematic properties of the W-boson and the associated jet are performed. The collinear phase space is populated by dijet events radiating a W-boson and events with a W-boson produced in association with several jets and it serves as an excellent data sample to probe higher-order theoretical predictions. Measured differential distributions are compared with predictions from state-of-the-art next-to-leading order multi-leg merged Monte Carlo event generators and a fixedorder calculation of the W +1-jet process computed at nextto-next-to-leading order in the strong coupling constant

    Measurement of W±-boson differential cross-sections in proton–proton collisions with low pile-up data at √s = 5.02TeV and 13TeV with the ATLAS detector

    Get PDF
    High precision single-differential W±-boson production cross-sections as a function of electron or muon transverse momentum pT or their pseudorapity η, as well as double-differential cross-sections as functions of these variables, are measured in proton–proton collisions at centre-of mass energies √s = 5.02TeV and 13TeV. The W-boson charge asymmetry as a function of lepton η is also measured. The data, collected in dedicated runs at reduced instantaneous luminosity with the ATLAS detector at the Large Hadron Collider, correspond to integrated luminosities of 255pb−1 at 5.02TeV and 338pb−1 at 13TeV. The measurements are in agreement with Standard-Model predictions calculated at next-to-next-to-leading-order in the strong coupling constant αs including transverse-momentum resummation at next-to next-to-leading logarithmic accuracy using several parton distribution functions. The impact of the measured differential cross-sections as a function of lepton η on the determination of these functions is studied using a profiling technique
    corecore