442 research outputs found

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man

    Pdl1 Is a Putative Lipase that Enhances Photorhabdus Toxin Complex Secretion

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin first characterized in the insect pathogens Photorhabdus and Xenorhabdus, but now seen in a range of pathogens, including those of humans. These complexes comprise three protein subunits, A, B and C which in the Xenorhabdus toxin are found in a 4∶1∶1 stoichiometry. Some TCs have been demonstrated to exhibit oral toxicity to insects and have the potential to be developed as a pest control technology. The lack of recognisable signal sequences in the three large component proteins hinders an understanding of their mode of secretion. Nevertheless, we have shown the Photorhabdus luminescens (Pl) Tcd complex has been shown to associate with the bacteria's surface, although some strains can also release it into the surrounding milieu. The large number of tc gene homologues in Pl make study of the export process difficult and as such we have developed and validated a heterologous Escherichia coli expression model to study the release of these important toxins. In addition to this model, we have used comparative genomics between a strain that releases high levels of Tcd into the supernatant and one that retains the toxin on its surface, to identify a protein responsible for enhancing secretion and release of these toxins. This protein is a putative lipase (Pdl1) which is regulated by a small tightly linked antagonist protein (Orf53). The identification of homologues of these in other bacteria, linked to other virulence factor operons, such as type VI secretion systems, suggests that these genes represent a general and widespread mechanism for enhancing toxin release in Gram negative pathogens

    The introduction and refinement of the assessment of digitally recorded audio presentations

    Get PDF
    This case study critically evaluates benefits and challenges of a form of assessment included in a final year undergraduate Religious Studies Open University module, which combines a written essay task with a digital audio recording of a short oral presentation. Based on the analysis of student and tutor feedback and sample assignments, this study critically examines how teaching and learning practices linked to this novel form of assessment have been iteratively developed in light of the project findings over a period of two years. It concludes that while this form of assessment poses a number of challenges, it can create valuable opportunities for the development of transferable twenty-first-century graduate employability skills as well as deep, effective learning experiences, particularly – though not exclusively – in distance learning settings

    Evaluation of epidermal growth factor receptors in bladder tumours.

    Get PDF
    Epidermal growth factor (EGF) receptor expression in 31 primary human bladder tumours was quantitated using both structural and functional assays and the EGF receptor gene in the same tumours was analyzed by Southern blot analysis. Immunocytochemical studies using the EGFR1 monoclonal antibody (Mab) showed a significant correlation between EGF receptor levels and the stage and grade of the tumours. Autophosphorylation assays employed to evaluate the receptor's tyrosine kinase activity gave results which in general were consistent with the immunocytochemical data. Using internally controlled immunocytochemical studies with two Mabs and Southern blot analysis of DNA isolated from the tumours, no evidence was obtained for the production of truncated receptors similar to those encoded by the v-erb-B oncogene. Gene amplification was not found in any of the superficial tumours, but one invasive tumour with high EGF receptor expression had an 8-10 fold amplification of the EGF receptor gene. The EGF receptor isolated from this tumour showed a normal pattern of tyrosine phosphorylation at all three major autophosphorylation sites. Our detailed study is consistent with the correlation previously found between EGF receptor expression and stage and grade of bladder tumours, and suggests that at this level of analysis EGF receptors in bladder tumours are not abnormal in structure or size, autophosphorylation activity, or gene structure

    Rethinking the social impacts of the arts

    Get PDF
    The paper presents a critical discussion of the current debate over the social impacts of the arts in the UK. It argues that the accepted understanding of the terms of the debate is rooted in a number of assumptions and beliefs that are rarely questioned. The paper goes on to present the interim findings of a three‐year research project, which aims to rethink the social impact of the arts, with a view to determining how these impacts might be better understood. The desirability of a historical approach is articulated, and a classification of the claims made within the Western intellectual tradition for what the arts “do” to people is presented and discussed

    Observation of magnetic vortex pairs at room temperature in a planar {\alpha}-Fe2O3/Co heterostructure

    Full text link
    Vortices are among the simplest topological structures, and occur whenever a flow field `whirls' around a one-dimensional core. They are ubiquitous to many branches of physics, from fluid dynamics to superconductivity and superfluidity, and are even predicted by some unified theories of particle interactions, where they might explain some of the largest-scale structures seen in today's Universe. In the crystalline state, vortex formation is rare, since it is generally hampered by long-range interactions: in ferroic materials (ferromagnetic and ferroelectric), vortices are only observed when the effects of the dipole-dipole interaction is modified by confinement at the nanoscale, or when the parameter associated with the vorticity does not couple directly with strain. Here, we present the discovery of a novel form of vortices in antiferromagnetic (AFM) hematite (α\alpha-Fe2_2O3_3) epitaxial films, in which the primary whirling parameter is the staggered magnetisation. Remarkably, ferromagnetic (FM) topological objects with the same vorticity and winding number of the α\alpha-Fe2_2O3_3 vortices are imprinted onto an ultra-thin Co ferromagnetic over-layer by interfacial exchange. Our data suggest that the ferromagnetic vortices may be merons (half-skyrmions, carrying an out-of-plane core magnetisation), and indicate that the vortex/meron pairs can be manipulated by the application of an in-plane magnetic field, H_{\parallel}, giving rise to large-scale vortex-antivortex annihilation.Comment: 16 pages, 4 figure

    The calibration system for the photomultiplier array of the SNO+ experiment

    Get PDF
    A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements

    Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains

    Get PDF
    Polyubiquitin (pUb) chains formed between the C terminus of ubiquitin and lysine 63 (K63) or methionine 1 (M1) of another ubiquitin have been implicated in the activation of the canonical IκB kinase (IKK) complex. Here, we demonstrate that nearly all of the M1-pUb chains formed in response to interleukin-1, or the Toll-Like Receptors 1/2 agonist Pam(3)CSK(4), are covalently attached to K63-pUb chains either directly as K63-pUb/M1-pUb hybrids or indirectly by attachment to the same protein. Interleukin-1 receptor (IL-1R)-associated kinase (IRAK) 1 is modified first by K63-pUb chains to which M1-pUb linkages are added subsequently, and myeloid differentiation primary response gene 88 (MyD88) and IRAK4 are also modified by both K63-pUb and M1-pUb chains. We show that the heme-oxidized IRP2 ubiquitin ligase 1 interacting protein (HOIP) component of the linear ubiquitin assembly complex catalyzes the formation of M1-pUb chains in response to interleukin-1, that the formation of K63-pUb chains is a prerequisite for the formation of M1-pUb chains, and that HOIP interacts with K63-pUb but not M1-pUb linkages. These findings identify K63-Ub oligomers as a major substrate of HOIP in cells where the MyD88-dependent signaling network is activated. The TGF-beta–activated kinase 1 (TAK1)-binding protein (TAB) 2 and TAB3 components of the TAK1 complex and the NFκB Essential Modifier (NEMO) component of the canonical IKK complex bind to K63-pUb chains and M1-pUb chains, respectively. The formation of K63/M1-pUb hybrids may therefore provide an elegant mechanism for colocalizing both complexes to the same pUb chain, facilitating the TAK1-catalyzed activation of IKKα and IKKβ. Our study may help to resolve the debate about the relative importance of K63-pUb and M1-pUb chains in activating the canonical IKK complex
    corecore