823 research outputs found

    TCF7L2 polymorphisms and inflammatory markers before and after treatment with fenofibrate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation is implicated in causing diabetes. We tested whether transcription factor 7 like-2 (TCF7L2) gene polymorphisms (rs12255372 and rs7903146), consistently associated with type 2 diabetes, are associated with plasma concentrations of inflammatory markers before and after three weeks of daily treatment with fenofibrate.</p> <p>Methods</p> <p>Men and women in the Genetics of Lipid-Lowering Drugs and Diet Network study (n = 1025, age 49 ± 16 y) were included. All participants suspended use of lipid-lowering drugs for three weeks and were then given 160 mg/day of fenofibrate for three weeks. Inflammatory markers and lipids were measured before and after fenofibrate. ANOVA was used to test for differences across TCF7L2 genotypes.</p> <p>Results</p> <p>Under the additive or dominant model, there were no significant differences (<it>P </it>> 0.05) in the concentrations of inflammatory markers (hsCRP, IL-2, IL-6, TNF-α and MCP-1) across TCF7L2 genotypes in the period before or after treatment. For both rs12255372 and rs7903146, homozygote T-allele carriers had significantly higher (<it>P </it>< 0.05) post-fenofibrate concentrations of MCP-1 in the recessive model. No other significant associations were detected.</p> <p>Conclusion</p> <p>Overall these data show no association between TCF7L2 polymorphisms and the inflammatory markers suggesting that the effects of TCF7L2 on diabetes may not be via inflammation.</p

    Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells

    Get PDF
    The incidence of distant metastases is higher in the tumours with low oxygen pressure than in those with high oxygen pressure. It is well known that hypoxia induces the transcription of various genes involved in angiogenesis and anaerobic metabolism necessary for the growth of tumour cells in vivo, suggesting that hypoxia may also induce the transcription of metastasis-associated genes. We sought to identify the metastasis-associated genes differentially expressed in tumour cells under hypoxic conditions with the use of a DNA microarray system. We found that hypoxia enhanced the expression of autocrine motility factor mRNA in various cancer cells and also enhanced the random motility of pancreatic cancer cells. Autocrine motility factor inhibitors abrogated the increase of motility under hypoxic conditions. In order to explore the roles of hypoxia-inducible factor-1α, we established hypoxia-inducible factor-1α-transfectants and dominant negative hypoxia-inducible factor-1α-transfectants. Transfection with hypoxia-inducible factor-1α and dominant-negative hypoxia-inducible factor-1α enhanced and suppressed the expression of autocrine motility factor/phosphohexase isomerase/neuroleukin mRNA and the random motility, respectively. These results suggest that hypoxia may promote the metastatic potential of cancer cells through the enhanced autocrine motility factor/phosphohexase isomerase/neuroleukin mRNA expression and that the disruption of the hypoxia-inducible factor-1 pathway may be an effective treatment for metastasis

    Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    Get PDF
    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences

    Sagittal realignment osteotomy for increased posterior tibial slope after opening-wedge high tibial osteotomy: a case report

    Get PDF
    A 40 year old welder who underwent opening-wedge high tibial osteotomy for correction of alignment in a varus knee developed persistent pain with loss of knee extension. The posterior tibial slope increased from 9 degrees to 20 degrees after the osteotomy and caused the anteromedial knee pain and limited extension. The patient then underwent a revision osteotomy using a closing wedge technique to correct tibial slope. The osteotomy was performed, first from the medial cortex in the lateral direction, and second in the anteroposterior direction to remove the tibial bone in wedge shape and obtain full extension of the knee. The posterior tibial slope decreased to 8 degrees after the revision osteotomy and the patients returned to pain-free daily life. We reviewed this unique technique for correction of sagittal malalignment using a closing-wedge osteotomy for revision after opening-wedge osteotomy

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Effect of temporary cements on the shear bond strength of luting cements

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)-based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. RESULTS: Means were (MPa): I - 3.80 (&plusmn;1.481); II - 5.24 (&plusmn;2.297); III - 6.98 (&plusmn;1.885); IV - 6.54 (&plusmn;1.459); V - 5.22 (&plusmn;2.465); VI - 4.48 (&plusmn;1.705); VII - 6.29 (&plusmn;2.280); VIII - 2.47 (&plusmn;2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2-based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyX TM ARC and RelyX TM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). CONCLUSION: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation

    Voluntary exercise can strengthen the circadian system in aged mice

    Get PDF
    Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and &gt;18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (&gt;21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption

    A frameshift mutation of the chloroplast matK coding region is associated with chlorophyll deficiency in the Cryptomeria japonica virescent mutant Wogon-Sugi

    Get PDF
    Wogon-Sugi has been reported as a cytoplasmically inherited virescent mutant selected from a horticultural variety of Cryptomeria japonica. Although previous studies of plastid structure and inheritance indicated that at least some mutations are encoded by the chloroplast genome, the causative gene responsible for the primary chlorophyll deficiency in Wogon-Sugi, has not been identified. In this study, we identified this gene by genomic sequencing of chloroplast DNA and genetic analysis. Chloroplast DNA sequencing of 16 wild-type and 16 Wogon-Sugi plants showed a 19-bp insertional sequence in the matK coding region in the Wogon-Sugi. This insertion disrupted the matK reading frame. Although an indel mutation in the ycf1 and ycf2 coding region was detected in Wogon-Sugi, sequence variations similar to that of Wogon-Sugi were also detected in several wild-type lines, and they maintained the reading frame. Genetic analysis of the 19 bp insertional mutation in the matK coding region showed that it was found only in the chlorophyll-deficient sector of 125 full-sibling seedlings. Therefore, the 19-bp insertion in the matK coding region is the most likely candidate at present for a mutation underlying the Wogon-Sugi phenotype

    Host-specific genetic variation of highly pathogenic avian influenza viruses (H5N1)

    Get PDF
    The complete genome sequences of two isolates A/chicken/Egypt/CL6/07 (CL6/07) and A/duck/Egypt/D2br10/07 (D2br10/07) of highly pathogenic avian influenza virus (HPAI) H5N1 isolated at the beginning of 2007 outbreak in Egypt were determined and compared with all Egyptian HPAI H5N1 sequences available in the GenBank. Sequence analysis utilizing the RNA from the original tissue homogenate showed amino acid substitutions in seven of the viral segments in both samples. Interestingly, these changes were different between the CL6/07 and D2br10/07 when compared to other Egyptian isolates. Moreover, phylogenetic analysis showed independent sub-clustering of the two viruses within the Egyptian sequences signifying a possible differential adaptation in the two hosts. Further, pre-amplification analysis of H5N1 might be necessary for accurate data interpretation and identification of distinct factor(s) influencing the evolution of the virus in different poultry species
    corecore