6 research outputs found

    Diffusion of intrinsically disordered proteins within viscoelastic membraneless droplets

    Full text link
    In living cells, intrinsically disordered proteins (IDPs), such as FUS and DDX4, undergo phase separation, forming biomolecular condensates. Using molecular dynamics simulations, we investigate their behavior in their respective homogenous droplets. We find that the proteins exhibit transient subdiffusion due to the viscoelastic nature and confinement effects in the droplets. The conformation and the instantaneous diffusivity of the proteins significantly vary between the interior and the interface of the droplet, resulting in non-Gaussianity in the displacement distributions. This study highlights key aspects of IDP behavior in biomolecular condensates

    Advances in Cardiac Tissue Engineering

    No full text
    Tissue engineering has paved the way for the development of artificial human cardiac muscle patches (hCMPs) and cardiac tissue analogs, especially for treating Myocardial infarction (MI), often by increasing its regenerative abilities. Low engraftment rates, insufficient clinical application scalability, and the creation of a functional vascular system remain obstacles to hCMP implementation in clinical settings. This paper will address some of these challenges, present a broad variety of heart cell types and sources that can be applied to hCMP biomanufacturing, and describe some new innovative methods for engineering such treatments. It is also important to note the injection/transplantation of cells in cardiac tissue engineering

    Generation of cell lines from embryonic quail retina capable of mature neuronal differentiation

    No full text
    The avian embryonic retina is widely used as a model system for cellular and molecular studies on central nervous system neurons. We aimed at the generation of cell lines from the early embryonic quail retina by retroviral oncogene transduction. For this, we made use of the retina organ culture system which exhibits both proliferation, necessary for stable oncogene transduction, and initial neuronal differentiation, a prerequisite for the generation of cell lines with mature neuronal properties. The oncogene myc was chosen as it is both proliferation-inducing and differentiation-compatible. A chimeric gene, mycER, containing v-myc and the hormone-binding domain of the estrogen receptor, was used for transduction in order to allow for hormone regulation of myc activity. Transduced organ-cultured cells from temporal and nasal retina were passaged into sparse single cell cultures. From these, colonies of rapidly dividing cells were isolated and the progeny expanded as cell lines. The lines contained cells with features of neuroepithelial cells, showing vimentin and A2B5. They also contained spontaneously differentiated neuronal cells showing neurofilament L and N-CAM180. A subpopulation of the neuronal cells exhibited the morphological characteristics of retinal ganglion cells, i.e., large pear-shaped somata each emitting one long process with a distinct growth cone. In addition, they showed the marker profile of retinal ganglion cells, i.e., expression of Thy-1, G4, DM-GRASP, Nr-CAM, neurofilament H, and tau. Neuronal differentiation could be induced by the addition of db cAMP and retinoic acid. The mature neuronal features of the lines open new possibilities to study properties of retinal neurons, including ganglion cells, in a defined and manipulable experimental system

    Psoriasis vulgaris

    No full text
    corecore